Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4/Gọi hai trung tuyến kẻ từ B, C là BM và CN, chúng cắt nhau tại O
Bây giờ ta sẽ chứng minh rằng : Nếu hai trung tuyến đó vuông góc thì b^2 + c^2 = 5a^2 , từ đó suy ra điều ngược lại (vì mệnh đề này đúng với thuận và đảo)
Gỉa sử BM vuông góc với CN tại O
Ta đặt OM = x => OB = 2x và => OC =2y
AB^2/4 + AC^2/4= NB^2 + MC^2 = ON^2 + OB^2 + OM^2 + OC^2 = 5(x^2 + y^2)
=> AB^2 + AC^2 = 20(x^2 + y^2)
Mà BC^2 = OC^2 + OB^2 = 4(x^2 + y^2)
Suy ra : AB^2 + AC^2 = 5.4(x^2 + y^2) = 5BC^2 hay b^2 + c^2 = 5a^2
ta có điều ngược lại là nếu b^2 + c^2 = 5a^2 thì hai trung tuyến vuông góc(cái này tự làm ngược nha bn)
5
Vẽ tam giác ABC cân tại A có góc A bằng 36 độ. Và BC=1.Khi đó góc B = góc C = 72 độ.
Vẽ BD phân giác góc B , DH vuông góc AB. Đặt AH=BH=x, ta có AB=AC=2x và DC=2x-1
Cm được tam giác ABD và BCD cân => AD=BD=BC=1
cos A = cos 36 = AH/AD=x/1=x
Vì BD là đường phân giác nên AD/DC=AB/AC => \(\frac{1}{2x-1}=\frac{2x}{1}\)
=> \(4x^2-2x-1=0\Leftrightarrow\left(2x-\frac{1}{2}\right)^2-\left(\frac{\sqrt{5}}{2}\right)^2=0\)
\(\Leftrightarrow\left(2x-\frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(2x-\frac{1}{2}+\frac{\sqrt{5}}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{4}\left(N\right)\\x=\frac{1-\sqrt{5}}{4}< 0\left(L\right)\end{cases}}\)
Vậy cos 36o = (1 + √5)/4
mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)
Tham khảo:
Xem hình, trong đó HE//AC
a) HB/BC = HE/CM = HE/AM = HO/AO = HC/AC (tính chất phân giác)
=> HC/HB = AC/BC ( chứ ko phải = AB/BC như đề bài , bạn xem lại đề)
b) Đặt HC = h Theo định lý hs cô sin ta có:
a^2 + b^2 - c^2 = 2ab.cosC = 2ab.HC/AC = 2ab(h/b) = 2ah
(a + b)(a^2 + b^2 - c^2) = 2a^2b
<=> 2ah(a + b) = 2a^2b
<=> (a + b)h = ab
<=> ah = b(a - h)
<=> BC.HC = AC.HB (vì a - h = BC - HC = HB)
<=> HC/HB = AC/BC (đúng theo câu a)
A, Sửa đề AB thành AC
\(HE//AC\)
a) \(\frac{HB}{BC}=\frac{HE}{CM}=\frac{HE}{AM}=\frac{HO}{OA}=\frac{HC}{AC}\) (tính chất phân giác)
\(\rightarrow\frac{HC}{HB}=\frac{AC}{BC}\)
b) Đặt \(HC=h\) Theo định lý hs cô sin ta có:
\(a^2+b^2-c^2=2ab.cosC=2ab.\frac{HC}{AC}=2ab\left(\frac{h}{b}\right)=2ah\)
\(\left(a+b\right)\left(a^2+b^2-c^2\right)=2a^2b\)
\(\Leftrightarrow2ah\left(a+b\right)=2a^2b\)
\(\Leftrightarrow\left(a+b\right).h=ab\)
\(\rightarrow ah=b\left(a-h\right)\)
\(\Leftrightarrow BC.HC=AC.HB\)( Vì \(a-h=BC-HC=HB\)
\(\rightarrow\frac{HC}{HB}=\frac{AC}{BC}\) (đúng theo câu a)