Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Nối AD,AE.Ta có :
AD = AH vì nằm trên đường trung tuyến của DH
AE = AH vì nằm trên đường trung tuyến của EH
=> AD = AE hay tam giác ADE cân
Xét \(\Delta ADB\)và \(\Delta AHB\)
+ AB chung
+ AD = AH
+\(\widehat{DAB}=\widehat{HAB}\)
\(\Rightarrow\Delta ADB=\Delta AHB\left(c.g.c\right)\)
\(\Rightarrow\widehat{ADB}=\widehat{AHB}=90^0\)
Chứng minh tương tự ta được tam giác AEC vuông tại E
Suy ra \(90^0-\widehat{ADE}=90^0-\widehat{AED}\Leftrightarrow\widehat{IDB}=\widehat{KEC}\)
Mà \(\widehat{IDB}=\widehat{IHB};\widehat{KEC}=\widehat{KHC}\)
\(\Rightarrow\widehat{IHB}=\widehat{KHC}\)
Kéo dài IH về phía H.Lấy điểm S bất kì thuộc tia đối của IH
Xét tam giác IKH có KC là tia phân giác của góc ngoài HKE và HC là tia phân giác góc ngoài KHS
Chứng minh HC là phân giác của góc KHS
Ta có \(\widehat{IHB}=\widehat{CHS}=\widehat{KHC}\)(đối đỉnh)
\(\Rightarrow\widehat{KHC}=\widehat{CHS}\)
Vậy hai tia phân giác của hai góc ngoài của tam giác IKH cắt nhau tại .Suy ra IC là tia phân giác của góc KIH
b) Ta có IB là phân giác của góc DIH
IC là phân giác của góc HIK
Mà hai góc trên kề bù
=> IB và IC vuông góc với nhau
(Hình bạn lên mạng tra theo đề là ra nhiều lắm nhé mình ko biết vẽ hình trên OLM bạn thông cảm)
d) ta co : goc BHI+goc IHA =90 ( 2 goc ke phu)
----> goc BHI =90- goc IHA
ma goc IHA = goc ADI ( tam giac ADI = tam giac AHI)
nen goc BHI=90- goc ADI (1)
ta co :
goc ADE = (180- goc DAE):2 ( tam giac ADE can tai A)
ma goc DAE= 2. goc BAC ( cm cau b)
nen goc ADE = (180-2.goc BAC):2= 90-goc BAC
---> goc BAC =90- goc ADE (2)
tu (1) va (2) suy ra goc BHI= goc BAC
a) IB là đường trung trực của HD nên ID = IH => \(\Delta IDH\) cân tại I.IB là đường cao,phân giác,trung tuyến,trung trực
b) Xét \(\Delta HIK\) , IB là đường phân giác của góc ngoài tại I ,tương tự KC là đường phân giác của góc ngoài tại K,chúng cắt nhau ở A nên HA là tia phân giác của góc IHK
P/S : Máy hơi bị lag mạnh nên thông cảm
a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)
Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)
Từ (1) và (2) ta có: AD=AH=AE
=> AD=AE(đpcm)
b) Kẻ I với H ; K với H
Theo câu a ta có AD=AE
=>Tam giác ADE cân tại A => góc ADE =góc AED
Vì AD=AH nên =>tam giác ADH cân tại A
=>góc ADH =góc AHD (1)
Vì AE=AH nên => tam giác AHE cân tại A
=> góc AHE=góc AEH (2)
Vì K thuộc đường trung trực của HE
=> KE = KH => tam giác KHE cân tại K
=> góc KHE =góc KEH (3)
Vì I thuộc đường trung trực của HD
=> ID = IH => tam giác IDH cân tại I
=> góc IDH =góc IHD (4)
Từ (1)và (4) =>góc ADE=AHI
Từ (2)và (4) =>góc AED=AHK
Mà ADE=AED(cmt) => AHI=AHK
Vậy suy ra HA là tia p/g của góc IHK
a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)
Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)
Từ (1) và (2) ta có: AD=AH=AE
=> AD=AE(đpcm)
b) Kẻ I với H ; K với H
Theo câu a ta có AD=AE
=>Tam giác ADE cân tại A => góc ADE =góc AED
Vì AD=AH nên =>tam giác ADH cân tại A
=>góc ADH =góc AHD (1)
Vì AE=AH nên => tam giác AHE cân tại A
=> góc AHE=góc AEH (2)
Vì K thuộc đường trung trực của HE
=> KE = KH => tam giác KHE cân tại K
=> góc KHE =góc KEH (3)
Vì I thuộc đường trung trực của HD
=> ID = IH => tam giác IDH cân tại I
=> góc IDH =góc IHD (4)
Từ (1)và (4) =>góc ADE=AHI
Từ (2)và (4) =>góc AED=AHK
Mà ADE=AED(cmt) => AHI=AHK
Vậy suy ra HA là tia p/g của góc IHK