Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự kẻ hình nhá
Trên tia đối của tia MA lấy điểm D sao cho AM=MD
Xét △ACM và △ABM có
góc BMD=góc AMC
MC=BM
AM=MD
Nên △ACM=△ABM(c.g.c)
=>AC=BD
Xét △ABD có
AB+BD>AD( theo BĐT tam giác)
Mà AC=BD
=>AB+AC>AD
Mà AM=\(\dfrac{1}{2}AD\) hay AM=2.AD
=>AM<\(\dfrac{AB+AC}{2}\)(1)
Xét △ABM, ta có
AM>AB-BM (*)
Xét △ACM có
AM>AC-CM(**)
Từ (*) và (**), ta có
2.AM>AB+AC-BM+CM (mà BM+CM=BC)
=>2AM>AB+AC-BC
Hay AM>\(\dfrac{AB+AC-BC}{2}\)(2)
Từ (1) và (2)=>\(\dfrac{AB+AC-BC}{2}< AM< \dfrac{AB+AC}{2}\)(đpcm)
câu trả lời của mình bị báo cáo rồi ;-;
* còn gì nữa đâu mà khóc với sầu*
a)Xét \(\Delta ABD\) và \(\Delta ACD\) có :
\(BD=DC\)
\(\widehat{ABD}=\widehat{ACD}\left(\Delta ABCcân\right)\)
AB= AC
=> \(\Delta ABD\) = \(\Delta ACD\) (c-g-c)
b) Vì \(\Delta ABC\) cân tại A nên AD vừa là đường trung tuyến vừa là đường cao
=> \(AD\perp BC\)
*Nếu chx học cách trên thì bạn xem cách dưới đây"
Vì \(\Delta ABD\) = \(\Delta ACD\) nên \(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^o\)
=> \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^o}{2}=90^o\)
=> \(AD\perp BC\)
c)Xét \(\Delta EBD\) vuông tại E và \(\Delta FCD\) vuông tại F có :
\(\widehat{EBD}=\widehat{FCD}\)
\(BD=CD\)
=> \(\Delta EBD=\Delta FCD\left(ch-gn\right)\)
d) Vì D là trung điểm của BC nên \(DC=\dfrac{BC}{2}=\dfrac{12}{2}=6cm\)
Xét \(\Delta ADC\) vuông tại D có :
\(AC^2=AD^2+DC^2\)
\(100=AD^2+36\)
\(AD^2=100-36\)
\(AD^2=64\)
AD=8 cm
Câu a) Nè
Áp dụng định lí Pythagoras vào tam giác ABC
Ta có: \(AB^2+AC^2=BC^2\)
Vì AH hạ từ đỉnh A và vuông góc với BC nên AH là đường cao của tam giác ABC
Áp dụng tính chât đường cao của tam giác vuông
Ta có: \(AH\cdot BC=AB\cdot AC\)
Suy ra: \(AH^2\cdot BC^2=AB^2\cdot AC^2\)
Suy ra \(\frac{BC^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)
Suy ra \(\frac{AC^2+AB^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)
Suy ra: \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)
Vậy Kết luận
~~~ Hết ~~~
Chụy là chanh đừng nhờn với chụy nha em.
Xong mik đã chứng minh xong một câu a) còn câu b dễ lắm tự làm nha, bro. Hết
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
Ta có:
\(AD>AB-BD\) (BĐT trong \(\Delta ABD\) ) \(\left(1\right)\)
\(AD>AC-CD\) (BĐT trong \(\Delta ACD\) ) \(\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) cộng vế:
\(\Rightarrow2AD>AB-BD+AC-CD\\ \Rightarrow2AD>AB+AC-BC\\ \Rightarrow AD>\dfrac{AB+AC-BC}{2}\)
Tương tự, ta có:
\(AD< AB+BD\) (BĐT trong \(\Delta ABD\) ) \(\left(4\right)\)
\(AD< AC+CD\) (BĐT trong \(\Delta ACD\) ) \(\left(5\right)\)
Từ \(\left(4\right)\left(5\right)\), cộng vế:
\(\Rightarrow2AD< AB+BD+AC+CD\\ \Rightarrow2AD< AB+AC+BC\\ \Rightarrow AD< \dfrac{AB+AC+BC}{2}\)
mà
\(AD>\dfrac{AB+AC-BC}{2}\left(cmt\right)\\ \Rightarrow\dfrac{AB+AC-BC}{2}< AD< \dfrac{AB+AC+BC}{2}\)
\(AD>AB-BD\\ AD>AC-CD\\ \Rightarrow2.AD>AB+AC-BC\\ \Rightarrow AD>\dfrac{AB+AC-BC}{2}\)
\(AD< AB+BD\\ AD< AC+CD\\ \Rightarrow2.AD< AB+AC+BC\\ \Rightarrow AD< \dfrac{AB+AC+BC}{2}\)