Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C A B H K
Xét \(\Delta\) BAH có: gócABH+góc HAB+góc HBA=180độ
=>90 độ +góc HAB+góc HBA=180 độ
=>góc HAB+ góc HBA=90 độ
=>góc HBA=90 độ- gócHAB(1)
Ta có: góc HAB+ góc BAC+ góc CAK=180 độ
=>góc HAB+90 độ+góc CAK=180 độ
=>góc HAB+ góc CAK=90 độ
=> góc CAK=90 độ - góc HAB(2)
Từ (1`) và (2)=>góc HBA= góc CAK
Xét \(\Delta\)HAB và \(\Delta\)KCA có:
góc BHA= góc CKA=90độ
AB=AC(giả thiết)
góc HBA= góc CAK( theo c/m trên)
=>\(\Delta\)HAB=\(\Delta\)KCA(g.c.g)
=>AH=CK(2 cạnh tương ứng)
=>BH=AK(2 cạnh tương ứng)
=>AH+AK=BH+CK
=>HK=5+2=7(cm)
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
a) Ta có góc BAK + góc KAC=90 độ ( vì tam giác ABC vuông tại A) (1)
góc BAH + góc ABH=90 độ ( vì tam giác ABH vuông ở H) (2)
Từ (1) và (2) => góc KAC= góc ABH
Xét tam giác ABH và tam giác CAK có:
góc AHB= góc AKC=90 độ
AB=AC
góc ABH= góc CAK
=> tam giác ABH= tam giác CAK ( cạnh huyền- góc nhọn)
=> BH=AK
sau mk lam tiep nha. mk ban roi
A B C H K
a,
Cách 1: Vì △ABC đều => AB = AC = BC = 5 cm
Theo tính chất △ đều thì đường cao trong △ đều chính là đường trung tuyến => HA = HC = AC : 2 = 5 : 2 = 2,5 (cm)
Xét △BHA vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> (2,5)2 + BH2 = 52 => 6,25 + BH2 = 25 => BH2 = 18,75 => BH = \(\frac{5\sqrt{3}}{2}\approx4,3\)(cm)
Cách 2: Áp dụng công thức \(h=a\frac{\sqrt{3}}{2}\) (h là đg` cao; a là chiều dài cạnh △ đều)
\(\Rightarrow BH=\frac{5\sqrt{3}}{2}\approx4,3\)(cm)
b,
A C H K B
Vì △ABC đều => ABC = ACB = BAC = 60o
Theo tính chất △ đều thì đường cao trong △ đều chính là chính là đường phân giác của góc ở đỉnh.
=> BH là phân giác ABC => ABH = HBC = ABC : 2 = 60o : 2 = 30o
Ta có: ABK + ABH = 180o (2 góc kề bù) => ABK + 30o = 180o => ABK = 150o
Và KBC + CBH = 180o (2 góc kề bù) => KBC + 30o = 180o => KBC = 150o
Lại có: AB = BK = BC = 5 cm
=> △ABK cân tại B (1) và △KBC cân tại B (2)
(1) => BKA = (180o - KBA) : 2 = (180o - 150o) : 2 = 30o : 2 = 15o
(2) => BKC = (180o - KBC) : 2 = (180o - 150o) : 2 = 30o : 2 = 15o
Ta có: AKC = BKA + BKC = 15o + 15o = 30o
Lại có: ABC + AKC = 60o + 30o = 90o