Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: vecto AB=(1;-1); vecto AC=(2;1); vecto BC=(1;2)
AB có VTPT là (1;1)
Phương trình AB là;
1(x-1)+1(y+1)=0
=>x+y=0
AC có VTPT là (-1;2)
PT AC là:
-1(x-1)+2(y+1)=0
=>-x+1+2y+2=0
=>-x+2y+3=0
BC có VTPT là (-2;1)
PT BC là;
-2(x-2)+1(y+2)=0
=>-2x+y+6=0
b: AH có VTPT là (1;2)
Phương trình AH là:
1(x-1)+2(y+1)=0
=>x-1+2y+2=0
=>x+2y+1=0
Gọi N là trung điểm AB
Trong tam giác vuông ABH, HN là trung tuyến ứng với cạnh huyền
\(\Rightarrow HN=\dfrac{1}{2}AB=AN\Rightarrow\Delta AHN\) cân tại N
\(\Rightarrow\widehat{BAH}=\widehat{AHN}=\widehat{MAC}\) (1)
Trong tam giác ABC, MN là đường trung bình \(\Rightarrow MN||AC\) (2)
\(\Rightarrow\widehat{NMA}=\widehat{MAC}\) (3)
(1);(3) \(\Rightarrow\widehat{AHN}=\widehat{NMA}\) \(\Rightarrow\) tứ giác AMHN nội tiếp
\(\Rightarrow\widehat{ANM}=\widehat{AHM}=90^0\) (cùng chắn AM) hay \(MN\perp AB\) (4)
(2);(4) \(\Rightarrow AB\perp AC\) hay tam giác ABC vuông tại A
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}3x-y+8=0\\3x+y-2=0\end{matrix}\right.\) \(\Rightarrow A\left(-1;5\right)\)
AM là trung tuyến ứng với cạnh huyền trong tam giác vuông
\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{3\sqrt{10}}{2}\)
Từ vecto pháp tuyến của AM và AM ta có:
\(cos\widehat{HAM}=\dfrac{\left|3.3-1.1\right|}{\sqrt{3^2+\left(-1\right)^2}.\sqrt{3^2+1^2}}=\dfrac{4}{5}\)
\(\Rightarrow AH=AM.cos\widehat{HAM}=\dfrac{6\sqrt{10}}{5}\)
Do H thuộc AH nên tọa độ có dạng: \(H\left(a;3a+8\right)\Rightarrow\overrightarrow{AH}=\left(a+1;3a+3\right)\)
\(\Rightarrow\left(a+1\right)^2+\left(3a+3\right)^2=\left(\dfrac{6\sqrt{10}}{5}\right)^2\)
\(\Rightarrow\) Giải ra a \(\Rightarrow\) tọa độ H \(\Rightarrow\) phương trình BC qua H và vuông góc AH nên nhận \(\left(1;3\right)\) là 1 vtpt
a: vecto BC=(1;-3)
=>VTPT là (3;1)
Phương trình BC là:
3(x-2)+y-2=0
=>3x-6+y-2=0
=>3x+y-8=0
b: Phương trình AH nhận vecto BC làm VTPT
=>Phương trình AH là:
1(x-1)+(-3)*(y-1)=0
=>x-1-3y+3=0
=>x-3y+2=0
c: Tọa độ M là:
\(\left\{{}\begin{matrix}x=\dfrac{1+3}{2}=2\\y=\dfrac{1-1}{2}=0\end{matrix}\right.\)
M(2;0); B(2;2)
vecto BM=(0;-2)
=>VTPT là (2;0)
Phương trình BM là:
2(x-2)+0(y-0)=0
=>2x-4=0
=>x=2
a: vecto AB=(2;2)=(1;1)
=>VTPT là (-1;1)
Phương trình tham số AB là: \(\left\{{}\begin{matrix}x=-1+t\\y=0+t=t\end{matrix}\right.\)
Phương trình tổng quát của AB là:
-1(x+1)+1(y-0)=0
=>-x-1+y=0
=>x-y+1=0
b: vecto BC=(2;0)
Vì AH vuông góc BC
nên AH nhận vecto BC làm vtpt và đi qua A
=>AH: 2(x+1)+0(y-0)=0
=>2x+2=0
=>x=-1
c: Tọa độ M la:
x=(-1+3)/2=2/2=1 và y=(0+2)/2=1
B(1;2); M(1;1)
vecto BM=(0;-1)
=>VTPT là (1;0)
Phương trình BM là:
1(x-1)+0(y-2)=0
=>x-1=0
=>x=1
a.
\(\overrightarrow{BC}=\left(2;-3\right)\Rightarrow\) đường thẳng BC nhận (3;2) là 1 vtpt
Phương trình BC:
\(3\left(x-2\right)+2\left(y-3\right)=0\Leftrightarrow3x+2y-12=0\)
b.
Gọi G là trọng tâm ABC \(\Rightarrow G\left(\dfrac{7}{3};\dfrac{4}{3}\right)\)
(C) tiếp xúc BC \(\Leftrightarrow d\left(G;BC\right)=R\)
\(\Rightarrow R=\dfrac{\left|3.\dfrac{7}{3}+2.\dfrac{4}{3}-12\right|}{\sqrt{3^2+2^2}}=\dfrac{7\sqrt{13}}{39}\)
Phương trình: \(\left(x-\dfrac{7}{3}\right)^2+\left(y-\dfrac{4}{3}\right)^2=\dfrac{49}{117}\)
a: vecto AB=(1;-1)
=>VTPT là (1;1)
Phương trình AB là:
1(x-0)+1(y-3)=0
=>x+y-3=0
vecto AC=(-3;2)
=>VTPT là (2;3)
Phương trình AC là:
2(x-0)+3(y-3)=0
=>2x+3y-9=0
vecto BC=(-4;3)
=>VTPT là (3;4)
Phương trình BC là;
3(x-1)+4(y-2)=0
=>3x-3+4y-8=0
=>3x+4y-11=0
vecto BC=(-4;3)
=>AH có VTPT là (-4;3)
Phương trình AH là;
-4(x-0)+3(y-3)=0
=>-4x+3y-9=0
b: vecto AC=(-3;2)
=>BK có VTPT là (-3;2)
Phương trình BK là:
-3(x-1)+2(y-2)=0
=>-3x+3+2y-4=0
=>-3x+2y-1=0
Tọa độ K là:
-3x+2y-1=0 và -4x+3y-9=0
=>K(15;23)
d: vecto AB=(1;-1)
=>Đường trung trực của AB có VTPT là (1;-1)
Tọa độ N là trung điểm của AB là:
x=(0+1)/2=1/2 và y=(2+3)/2=2,5
Phương trình đường trung trực của AB là:
1(x-0,5)+(-1)(y-2,5)=0
=>x-y+2=0
a: vecto MH=(1;1/2)=(2;1)
=>VTPT là (-1;2)
Phương trình MH là:
-1(x-1)+2(y-1)=0
=>-x+1+2y-2=0
=>-x+2y-1=0
b: Tọa độ C là:
-x+2y-1=0 và 3x+4y-17=0
=>x=3 và y=2
=>C(3;2)
Tọa độ B là:
x=2*0-3=-3 và y=2*1/2-2=1-2=-1