K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

Bài làm:

Δ ABC vuông tại A?

Ta có: \(\sin B=\frac{AC}{BC}=\frac{3}{5}\) <=> \(\frac{AC}{3}=\frac{BC}{5}=k\) \(\left(k\inℕ^∗\right)\)

=> \(AB^2=BC^2-CA^2=25k^2-9k^2=16k^2\)

=> \(AB=4k\)

Từ đây ta có thể dễ dàng tính được:

\(\cos B=\frac{AB}{BC}=\frac{4}{5}\) ; \(\tan B=\frac{AC}{AB}=\frac{3}{4}\) ; \(\cot B=\frac{AB}{AC}=\frac{4}{3}\)

30 tháng 8 2020

\(sin^2b+cos^2b=1\)      

\(\left(\frac{3}{5}\right)^2+cos^2b=1\)        

\(\frac{9}{25}+cos^2b=1\)     

\(cos^2b=\frac{16}{25}\)                      

\(cosb=\pm\sqrt{\frac{16}{25}}=\pm\frac{4}{5}\)       

\(tanb=\frac{sinb}{cosb}=\orbr{\begin{cases}\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\\\frac{\frac{3}{5}}{\frac{-4}{5}}=\frac{-3}{4}\end{cases}}\)     

\(cotb=\frac{1}{tanb}=\orbr{\begin{cases}\frac{1}{\frac{3}{4}}=\frac{4}{3}\\\frac{1}{\frac{-3}{4}}=\frac{-4}{3}\end{cases}}\)

18 tháng 7 2018

A B C

Áp dụng định lý Pytago ta có:

        \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=10\)

\(sinB=\frac{AC}{BC}=\frac{8}{10}=\frac{4}{5}\)     \(\Rightarrow\)\(cosC=\frac{4}{5}\)

\(cosB=\frac{AB}{BC}=\frac{6}{10}=\frac{3}{5}\)    \(\Rightarrow\) \(sinC=\frac{3}{5}\)

\(tanB=\frac{AC}{AB}=\frac{8}{6}=\frac{4}{3}\)     \(\Rightarrow\)\(cotC=\frac{4}{3}\)

\(cotB=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)      \(\Rightarrow\)\(tanC=\frac{3}{4}\)

20 tháng 7 2018

Cảm ơn nhiều nhé ^^ . mình rất ngu toán . Được bạn giúp thật tốt quá

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Lời giải:

Vì góc $\widehat{B}$ nhọn nên $\cos B>0$

Ta có:

$\cos ^2B=1-\sin ^2B=1-(\frac{3}{5})^2=\frac{16}{25}$

$\Rightarrow \cos B=\frac{4}{5}$

$\tan B=\frac{\sin B}{\cos B}=\frac{4}{5}: \frac{3}{5}=\frac{4}{3}$

$\cot B=\frac{1}{\tan B}=\frac{3}{4}$

NV
30 tháng 8 2020

\(cosB=\sqrt{1-sin^2B}=\sqrt{1-\frac{9}{25}}=\frac{4}{5}\)

\(tanB=\frac{sinB}{cosB}=\frac{3}{4}\)

\(cotB=\frac{1}{tanB}=\frac{4}{3}\)

13 tháng 9 2020

Định lí PYTAGO cho tam giác ABC vuông tại A: \(BC^2=AB^2+AC^2=2AB^2\Rightarrow BC=AB\sqrt{2}\)

Xét tam giác ABC vuông tại A: \(sinB=\frac{AC}{BC}=\frac{AB}{AB\sqrt{2}}=\frac{\sqrt{2}}{2}\)\(cosB=\frac{AB}{BC}=\frac{AB}{AB\sqrt{2}}=\frac{\sqrt{2}}{2}\)

\(tanB=\frac{AC}{AB}=\frac{AB}{AB}=1\)\(cotB=\frac{AB}{AC}=\frac{AB}{AB}=1\)

Vì tam giác ABC vuông cân tại A-->B=450

Vậy \(sin45^0=cos45^0\frac{\sqrt{2}}{2},tan45^0=cot45^0=1\)

,

15 tháng 2 2019

link:Đọc sách vì tương lai | HÃY CHĂM SÓC MẸ

16 tháng 2 2019

bn cũng thích lấy đại 1 câu hỏi còn chủ ý là nhờ bình chọn nhỉ? :) 

1 tháng 6 2017

bài trong sbt có giải á bạn

15 tháng 7 2017

a) Trong tam giác vuông BCH, ta có:

CH=BC.sin⁡B^=12.sin⁡60≈10,392 (cm)

Trong tam giác vuông ABC, ta có:

\(A\)=180−(60+40)=80

Trong tam giác vuông ACH, ta có:

\(AC=\dfrac{CH}{sinA}=\dfrac{10,932}{sin80}=10,552\left(cm\right)\)

b) Kẻ AK⊥BCAK⊥BC

Trong tam giác vuông ACK, ta có:

AK=AC.sin⁡C≈10,552.sin⁡40=6,783 (cm)

Vậy SABC=12.AK.BC≈12.6,783.12=40,696 (cm2)



11 tháng 7 2018

neu ai tra loi dung cho minh trong may tieng nay to k cho1 nink