K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

-Kẻ đường phân giác AD của △ABC.

-Có: \(\widehat{ADC}=\widehat{BAD}+\widehat{ABD}\) (\(\widehat{ADC}\) là góc ngoài của △ABD)

\(\widehat{BAC}=\widehat{BAD}+\widehat{CAD}\)

Mà \(\widehat{ABD}=\widehat{CAD}\left(=\dfrac{1}{2}\widehat{BAC}\right)\)

\(\Rightarrow\widehat{ADC}=\widehat{BAC}\)

-Xét △ADC và △BAC có:

\(\widehat{ADC}=\widehat{BAC}\left(cmt\right)\)

\(\widehat{ACB}\) là góc chung.

\(\Rightarrow\)△ADC∼△BAC (g-g).

\(\Rightarrow\dfrac{DC}{AC}=\dfrac{AC}{BC}\)(tỉ số đồng dạng)

-Xét △ABC có: AD là phân giác (gt)

\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (định lí đường phân giác của tam giác)

\(\Rightarrow\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}\)

\(\Rightarrow CD=\dfrac{BC.AC}{AB+AC}\)

Mà \(\dfrac{DC}{AC}=\dfrac{AC}{BC}\left(cmt\right)\)

\(\Rightarrow\dfrac{\dfrac{BC.AC}{AB+AC}}{AC}=\dfrac{AC}{BC}\)

\(\Rightarrow\dfrac{BC}{AB+AC}=\dfrac{AC}{BC}\)

\(\Rightarrow\left(AB+AC\right).AC=BC^2\)

\(\Rightarrow AC^2+AB.AC=BC^2\)

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

Xét ΔHAC và ΔABC có

góc H=góc A

góc C chung

=>ΔHAC đồng dạngvới ΔABC

b: Xet ΔABC vuông tại A có AH vuông góc BC

nên AB*AC=AH*BC; AB^2=BH*BC; AC^2=CH*CB; HA^2=HB*HC; 1/AH^2=1/AB^2+1/AC^2