K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

qua A,P vẽ đương tron tâm C là như thế nào vậy bạn

27 tháng 10 2016

khó

28 tháng 10 2017

A B C G E K D F

Trên tia đối của KG lấy điểm F sao cho KG=KF.

Ta có: \(\Delta\)ABC đều => ^A=600. Xét \(\Delta\)ADE có: ^A=600, AD=AE

=> \(\Delta\)ADE đều. Mà G là trọng tâm của \(\Delta\)ADE

=> G cũng là giao của 3 đường trung trực trong \(\Delta\)ABC 

=> DG=AG (T/c đường trung trực) (1)

Xét \(\Delta\)GDK và \(\Delta\)FCK:

KD=KC

^DKG=^CKF              => \(\Delta\)GDK=\(\Delta\)FCK (c.g.c)

KG=KF

=> DG=CF (2 cạnh tương ứng). (2)

Từ (1) và (2) => AG=CF.

Cũng suy ra đc: ^GDK=^FCK (2 góc tương ứng) => ^GDE+^EDK=^FCB+^BCK

Lại có: ED//BC (Vì \(\Delta\)ADE đều) => ^EDK=^BCK (So le trong)

=> ^GDE=^FCB (Bớt 2 vế cho ^EDK, ^BCK) (3)

Xét \(\Delta\)ADE: Đều, G trọng tâm => DG cũng là phân giác ^ADE

=> ^GDE=^ADE/2=300

Tương tự tính được: ^GAD=300 => ^GDE=^GAD hay ^GDE=^GAB (4)

Từ (3) và (4) => ^GAB=^FCB

Xét \(\Delta\)AGB và \(\Delta\)CFB có:

AB=CB

^GAB=^CFB           => \(\Delta\)AGB=\(\Delta\)CFB (c.g.c)

AG=CF

=> GB=FB (2 cạnh tương ứng) (5).

=> ^ABG=^CBF (2 góc tương ứng). Lại có:

^ABG+^GBC=^ABC=600. Thay ^ABG=^CBF ta thu được:

^CBF+^GBC=600 => ^GBF=600 (6)

Từ (5) và (6) => \(\Delta\)GBF là tam giác đều. => ^BGF=600 hay ^BGK=600

K là trung điểm của GF => BK là phân giác ^GBF => ^GBK= ^GBF/2=300

Xét \(\Delta\)BGK: ^BGK=600, ^GBK=300 => ^BKG=900.

ĐS: ^GBK=300, ^BGK=600, ^BKG=900.

*Xong*

29 tháng 10 2023

a: ΔCAE cân tại C

mà CI là đường trung tuyến

nên CI\(\perp\)AE

Xét ΔACM vuông tại A có AI là đường cao

nên \(CI\cdot CM=CA^2\)

b: \(\widehat{BAE}+\widehat{CAE}=90^0\)

\(\widehat{HAE}+\widehat{CEA}=90^0\)

mà \(\widehat{CAE}=\widehat{CEA}\)

nên \(\widehat{BAE}=\widehat{HAE}\)

=>AE là phân giác của góc HAB

ΔCAE cân tại C

mà CI là đường trung tuyến

nên CI là phân giác của \(\widehat{ACB}\)

Xét ΔCAMvà ΔCEM có

CA=CE

\(\widehat{ACM}=\widehat{ECM}\)

CM chung

Do đó: ΔCAM=ΔCEM

=>\(\widehat{CAM}=\widehat{CEM}=90^0\) và MA=ME

=>ME\(\perp\)BC

mà AH\(\perp\)BC

nên ME//AH

Xét ΔIFA vuông tại I và ΔIME vuông tại I có

IA=IE

\(\widehat{IAF}=\widehat{IEM}\)

Do đó: ΔIFA=ΔIME

=>IF=IM

=>I là trung điểm của FM

Xét tứ giác AMEF có

I là trung điểm chung của AE và MF

=>AMEF là hình bình hành

mà MA=ME

nên AMEF là hình thoi

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(\dfrac{BC}{CA}=\dfrac{AB}{AH}\)

Xét ΔAHB có AE là tia phân giác của \(\widehat{HAB}\)

nên \(\dfrac{BE}{EH}=\dfrac{BA}{AH}\)

\(\dfrac{BE}{EH}=\dfrac{BA}{AH}\)

=>\(\dfrac{BE}{EH}=\dfrac{BC}{CA}\)

=>\(\dfrac{BE}{EH}=\dfrac{BC}{CE}\)

=>\(BE\cdot EC=EH\cdot BC\)