Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Vì AE // BC nên góc AEB = EBC ( so le trong ) (1)
mà góc ABE = EBC ( BE là tia phân giác của góc ABC ) (2)
nên từ (1) và (2) suy ra góc AEB = ABE
mà 2 góc này là 2 góc đáy
=> ΔABE là tam giác cân
b) Do góc ABE = EBC = 50:2 = 25 độ
nên góc ABE = AEB = 25 độ
Ta có: ABE + AEB + BAE = 180 độ ( tc tổng 3 góc trong 1 tg )
=> 25 + 25 + BAE = 180
=> BAE = 130 độ.
Bài 2:
a) Vì ΔABC cân tại A nên góc ABC = ACB
mà góc ABC + ACB = 180 - BAC
=> góc ABC = 180 - BAC /2 (1)
Do AD = AE nên ΔADE cân tại A
được góc ADE = AED
mà góc ADE + AED = 180 - BAC
=> ADE = 180 - BAC/2 (2)
Từ (1) và (2) suy ra góc ABC = ADE
mà 2 góc này ở vị trí đồng vị => DE//BC
b) Ta có: AD + DB = AB
AE + EC = AC
mà AD = AE ( gt); AB = AC (theo câu a)
=> DB = EC
Xét ΔMBD và ΔMCE có:
DB = CE ( chứng minh trên )
Góc ABC = ACB ( theo câu a )
MB = MC ( suy từ gt)
=> ΔMBD = ΔMCE ( c.g.c )
c) Lại do ΔMBD = ΔMCE (theo câu b)
=> MD = ME (2 cạnh tương ứng)
Xét ΔAMD và ΔAME có:
AD = AE (gt)
AM chung
MD = ME ( cm trên )
=> ΔAMD = ΔAME ( c.c.c )
Chúc bạn học tốtNgân Phùng
Sửa lại bài 3:
Giải:
Vì tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Xét góc ngoài \(\widehat{xAC}=\widehat{B}+\widehat{C}\)
\(\Rightarrow\frac{1}{2}\widehat{xAC}=\widehat{C}\)
\(\Rightarrow\widehat{A_1}=\widehat{C}\)
Mà 2 góc trên ở vị trí so le trong nên Am // BC
Vậy Am // BC
Xét tam giác AID và tam giác BIM có :
AD = BM (gt)
AI = BI (GT)
\(\widehat{A}=\widehat{B}\) (Ax song song với BM; ở vị trí so le trong)
Do đó : tam giác AID = tam giác BIM (c-g-c)
B)
Xét 2 tam giác AIM và BID có :
AI = BI (gt)
DI = IM ( tam giác AID = tam giác BIM)
\(\widehat{BID}=\widehat{AIM}\)(Đ đ)
Do đó : \(\Delta AIM=\Delta BID\left(c-g-c\right)\)
c)
a) Ta có: \(BC^2=13^2=169\)
\(AB^2+AC^2=5^2+12^2=169\)
Do đó: \(BC^2=AB^2+AC^2\)(=169)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE(ΔBAD=ΔBED)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=CE
c: Ta có: ΔDAF=ΔDEC
=>DF=DC
=>D nằm trên đường trung trực của CF(1)
ta có: IF=IC
=>I nằm trên đường trung trực của CF(2)
ta có: BA+AF=BF
BE+EC=BC
mà BA=BE và AF=EC
nên BF=BC
=>B nằm trên đường trung trực của CF(3)
Từ (1),(2),(3) suy ra B,D,I thẳng hàng