Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC có góc A=60 độ.2 tia phân giác BM và CN cắt nhau tại I biết BC=4cm. Tính tổng BM+CN
https://olm.vn/hoi-dap/detail/94359836666.html
tương tự bài ở link này (mình gửi cho)
Học tốt!!!!!!!!!!!!!!
Ta có : \(\widehat{A}=60^o\) nên trong tam giác ABC có :
\(\widehat{B}+\widehat{C}=180^o-60^o=120^o\)
\(\Rightarrow\widehat{B_1}+\widehat{C_1}=120^o:2=60^o\)( góc ngoài tam giác BIC )
Kẻ tia phân giác ID của \(\Delta BIC\) .
Ta có : \(\widehat{BID}=\widehat{DIC}=60^o\)
\(\widehat{B_1}=\widehat{B_2}\)
BI cạnh chung ( \(\widehat{BIN}=\widehat{BID}=60^o\))
Vậy \(\Delta BIN=\Delta BID\left(g.c.g\right)\)
Suy ra : BN = BD (1)
Chứng minh tương tự ( giống phần trên ạ ) , \(\Delta CIM=\Delta CID\left(g.c.g\right)\)
Suy ra : CM = CD (2)
Từ (1) và (2) suy ra : BN + CM = BD + CD = BC
Vậy BN + CM = BC
a.Ta có:
ˆBID=12ˆBIC=12(180o−ˆBCI−ˆIBC)=12(180o−12ˆBCA−12ˆABC)=12(180o−12(ˆBCA+ˆABC)=12(180o−12(180o−ˆBAC)=60oBID^=12BIC^=12(180o−BCI^−IBC^)=12(180o−12BCA^−12ABC^)=12(180o−12(BCA^+ABC^)=12(180o−12(180o−BAC^)=60o
Lại có :
ˆNIB=ˆIBC+ˆICB
=1/2ˆABC+1/2ˆACB
=1/2(ˆABC+ˆACB)
=1/2(180o−ˆBAC)=60o
NIB^=IBC^+ICB^
=1/2ABC^+1/2ACB^
=1/2(ABC^+ACB^
=1/2(180o−BAC^)=60o
=>ˆNIB=ˆBID
=>ΔNIB=ΔDIB(g.c.g)
=>BN=BD(cmt)
b.Chứng minh tương tự câu a
→CD=CM
→BN+CM=BD+CD=BC→đpcm