Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây nè tự vẽ tự diễn nha
Vì AM VÀ BN LÀ 2 ĐG TRUNG TUYẾN
=> AN = 1/2 AC = 1/2 . 3 = 3/2
=> BM = 1/2 AB = 1/2 . 4 = 2
ĐẶT GN = X => GB = 2X ( TÍNH CHẤT TRỌNG TÂM)
GM = Y => GA = 2Y ( .....)
TAM GIÁC ANG VUÔNG TẠI N , THEO PYTAGO
GN^2 + GA^2 = AN^2
=> X^2 + (2Y)^2 = (3/2) ^2
=> X^2 + 4Y^2 = 9/4 (1)
tAM GIÁC GBM VUÔNG TẠI G THEO PY TA GO:
GM^2 + GB^2 = MB^2
=> Y^2+ ( 2X)^2 = 2^2
=> Y^2 + 4X^2 = 4
=> 4( Y^2 + 4X^2 ) = 4.4
=> 4Y^ 2 + 16X^2 = 16 (2)
lấY (2) - (1) TA CÓ 4Y^2 + 16 X^2 - X^2 - 4Y^2 = 16 -9/4
=> 15 X^2 = 55/4
=> X^2 = 11/12
TA CÓ X^2 + 4 Y^2 = 9/4 <=> 11/12 + 4 .Y^2 = 9/4 => 4Y^2 = 9/4 -11/2 =>4Y ^2 = 4/3 => Y^2 = 1/3
tAM GIÁC GAB VUÔNG TẠI g , THEO PY TA GO
(GA)^2 + (GB)^2 = AB^2
=> (2X)^2 + (2Y)^2 = AB^2
=>4X^2 + 4Y^2 = AB^2
=> 4( X^2 + Y^2 ) = AB^2
=> 4 ( 11/12 + 1 / 3) =AB^2
=> 4.5/4 = AB^2
=> AB^2 = 5
=> AB = CĂN 5
a/
\(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\) (Pitago)
b/
Ta có
\(AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5cm\) (Trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.\dfrac{5}{2}=\dfrac{5}{3}cm\) (trong tg 3 đường trung tuyến đồng quy tại 1 điểm và điểm đó cách đỉnh 1 khoảng bằng 2/3 độ dài đường trung tuyến mà trung tuyến đó đi qua)
c/
Xét tg ABN và tg CDN có
AN=CN (gt); BN=DN (gt)
\(\widehat{ANB}=\widehat{CND}\) (Góc đối đỉnh)
=> tg ABN=tg CDN (c.g.c)=> \(\widehat{BAN}=\widehat{DCN}=90^o\Rightarrow CD\perp AC\)
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC