K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

Ta có: DE đi qua trung điểm của AB và BC

⇒ DE là đường trung bình của tam giác ABC:

\(DE=\dfrac{1}{2}AC\)

\(\Rightarrow AC=DE:\dfrac{1}{2}=3:\dfrac{1}{2}=6\)

Áp dụng định lý cosin ta có:

\(AB^2=AC^2+BC^2-2\cdot AC\cdot BC\cdot cosACB\)

\(\Rightarrow9^2=6^2+BC^2-2\cdot6\cdot BC\cdot cos60^o\)

\(\Rightarrow81=36+BC^2-6BC\)

\(\Rightarrow BC^2-6BC-45=0\)

\(\Delta=\left(-6\right)^2-4\cdot1\cdot\left(-45\right)=216\)

\(\Rightarrow\left[{}\begin{matrix}BC=\dfrac{6+6\sqrt{6}}{2}=3+3\sqrt{6}\left(tm\right)\\BC=\dfrac{6-6\sqrt{6}}{2}=3-3\sqrt{6}\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow BC=3+3\sqrt{6}\)

\(\cos ABC=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)

\(\Leftrightarrow89a^2-AC^2=2\cdot5a\cdot8a\cdot\dfrac{1}{2}=40a^2\)

=>AC=7a

\(AM=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}=\dfrac{25a^2+49a^2}{2}-\dfrac{64a^2}{4}=37a^2-16a^2=21a^2\)

hay \(AM=a\sqrt{21}\left(cm\right)\)

NV
26 tháng 12 2022

Áp dụng định lý hàm cosin:

\(AC=\sqrt{AB^2+BC^2-2AB.BC.cosB}=\sqrt{2^2+3^2-2.2.3.cos60^0}=\sqrt{2}\)

Diện tích tam giác:

\(S=\dfrac{1}{2}AB.BC.sinB=\dfrac{1}{2}.2.3.sin60^0=\dfrac{3\sqrt{3}}{2}\)

28 tháng 2 2018

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

a) Do tam giác ABC là tam giác đều nên Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10 .

Theo định lý côsin trong tam giác ABM ta có:

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

b) Theo định lý sin trong tam giác ABM ta có:

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

c) Ta có: BM + MC = BC nên MC = BC – BM = 6 - 2 = 4 cm.

Gọi D là trung điểm AM.

Áp dụng công thức độ dài đường trung tuyến trong tam giác ta có:

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0

a: vecto AB=(1;2)

vecto BC=(3;-2)

vecto AC=(4;0)

b: Tọa độ I là:

x=(-1+0)/2=-1/2 và y=(2+4)/2=3

Tọa độ G là:

\(\left\{{}\begin{matrix}x=\dfrac{-1+0+3}{3}=\dfrac{2}{3}\\y=\dfrac{2+4+2}{3}=\dfrac{8}{3}\end{matrix}\right.\)

c: vecto AB=(1;2); vecto BC=(3;-2); vecto AC=(4;0)

A(-1;2); B(0;4); C(3;2)

PTTS của AB là:

x=-1+t và y=2+2t

PTTS của AC là:

x=-1+4t và y=2+0t=2

PTTS của BC là;

x=3+4t và y=2+0t=2

vecto AB=(1;2)

=>VTPT là (-2;1)

PTTQ của AB là:

-2(x+1)+1(y-2)=0

=>-2x-2+y-2=0

=>-2x+y-4=0

vecto AC=(4;0)

=>VTPT là (0;-4)

Phương trình AC là:

0(x-3)+(-4)(y-2)=0

=>y=2