K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2019

A B C E F H M N L S I J T (K)

Gọi S là đỉnh thứ tư của hình bình hành ABSC, I và J lần lượt là trung điểm BC và AH

Áp dụng ĐL Cosin vào hai tam giác BHM, CHN ta có:

\(BM^2=HB^2+HM^2-2HB.HM.\cos\widehat{BHM}\)

\(CN^2=HC^2+HN^2-2HC.HN.\cos\widehat{CHN}\)

Suy ra \(BM^2-CN^2=HB^2+HM^2-HC^2-HN^2\)(Vì \(\Delta\)BNH ~ \(\Delta\)CMH)

\(\Leftrightarrow BM^2-CN^2=\left(HB^2-HN^2\right)-\left(HC^2-HM^2\right)\Rightarrow BM^2-CN^2=BN^2-CM^2\)

\(\Leftrightarrow BM^2+CM^2=BN^2+CN^2\Leftrightarrow\frac{BM^2+CN^2}{2}-\frac{BC^2}{4}=\frac{BN^2+CN^2}{2}-\frac{BC^2}{4}\)

\(\Rightarrow MI^2=NI^2\)(Công thức đường trung tuyến). Kết hợp với JM = JN (=AH/2) suy ra IJ vuông góc MN (1)

Mặt khác trên đường thẳng qua H vuông góc với MN lấy T sao cho \(\frac{HT}{MN}=\frac{HM}{MC}=\frac{HN}{NB}\)

Dễ thấy ^THM = 900 + ^NMH = ^NMC; ^THN = ^MNB. Do đó \(\Delta\)THM ~ \(\Delta\)NMC; \(\Delta\)THN ~ \(\Delta\)MNB (c.g.c)

Suy ra ^HMT = ^MCN; ^HNT = ^NBM. Từ đó CN vuông góc TM; BM vuông góc TN dẫn đến TL vuông góc MN

Mà TH vuông góc MN nên HL vuông góc MN  (2)

Ta lại có I là trung điểm AS, khi đó IJ là đường trung bình trong \(\Delta\)HAS, suy ra IJ // HS  (3)

Từ (1); (2) và (3) suy ra H,L,S thẳng hàng. Vậy HL luôn đi qua S cố định (đpcm).

16 tháng 8 2021

A B C D E F O I J M P Q L K T

a) Vì tứ giác BFEC nội tiếp nên \(\widehat{PFB}=\widehat{ACB}=\widehat{PBF}\) suy ra \(PF=PB\)

Suy ra \(MP\perp AB\) vì MP là trung trực của BF. Do đó \(MP||CF\). Tương tự \(MQ||BE\)

b) Dễ thấy M,I,J đều nằm trên trung trực của EF cho nên chúng thẳng hàng. Vậy IJ luôn đi qua M cố định.

c) Gọi FK cắt AD tại T ta có \(FK\perp AD\) tại T. Theo hệ thức lượng \(IE^2=IF^2=IT.IL\)

Suy ra \(\Delta TIE~\Delta EIL\). Lại dễ có \(EI\perp EM\), suy ra ITKE nội tiếp

Do vậy \(\widehat{ILE}=\widehat{IET}=\widehat{IKT}=90^0-\widehat{LIK}\). Vậy \(IK\perp EL.\)

21 tháng 4 2019

F A B C O O 1 2 O D E K R M N I G H S J

a) Gọi AD cắt CE tại J. Khi đó tứ giác BEJD nội tiếp đường tròn (BJ).

Dễ thấy ^FDE = ^FDJ + ^EDJ = ^DAC + ^ECA = ^DEJ + ^JEF = ^FED => \(\Delta\)DEF cân tại F

Từ đó nếu gọi I là trung điểm của BJ thì ta có I là tâm nội tiếp của \(\Delta\)FO1O2

Do (O1) và (O) có hai điểm chung là A,B nên O1O là phân giác ^AO1D

Tương tự O2O là phân giác ^CO2E. Suy ra O là tâm bàng tiếp góc F của \(\Delta\)FO1O2

=> F,I,O thẳng hàng. Dễ có ^IEO1=^IBO1 = 900.

Gọi tiếp điểm giữa (O) và FO2 là G, hạ OH vuông góc AB. Khi đó ^FEI = ^FGO (=900)

=> \(\Delta\)FIE ~ \(\Delta\)FOG (g.g) => \(\frac{FI}{FO}=\frac{IE}{OG}=\frac{IJ}{OH}\)kéo theo \(\Delta\)EIJ ~ \(\Delta\)EOH (c.g.c)

=> E,J,H thẳng hàng. Từ đây, gọi S đối xứng với H qua (O) thì \(\Delta\)FJB ~ \(\Delta\)FHS (c.g.c)

=> F,B,S thẳng hàng. Hay FB đi qua S. Ta thấy AC cố định => OH=const => HS=const => S cố định.

Vậy FB luôn đi qua S cố định (đpcm).

b) Theo câu a, FJ đi qua H với H là trung điểm của AC. Theo bổ đề hình thang thì MN//AC

Suy ra ^MND = ^DAC = ^MED => Tứ giác MNED nội tiếp => ^MDN = ^MEN

=> ^MDN + 900 = ^MEN + 900 => ^BDM = ^BEN => 1800 - ^BDN = 1800 - ^BEN => ^MKB = ^NKB

Vì KB cắt đường tròn (MNK) tại R nên R là điểm chính giữa (MN => RM=RN

Ta lại có ^MEN = ^BEN - 900 = 900 - ^MKN/2 = ^MRN/2. Kết hợp với RM=RN

Dẫn đến điểm E thuộc đường tròn (R,RM). Tương tự có D cũng thuộc (R)

=> R là tâm ngoại tiếp tứ giác DMNE => RD = RE (đpcm).

21 tháng 4 2019

Sửa E thành F ở chỗ "\(\Delta\)EIJ ~ \(\Delta\)EOH" nhé ! Gõ nhầm :)

5 tháng 5 2019

A B C O P D E F K M N Q

Gọi O là tâm ngoại tiếp của \(\Delta\)ABC. Khi đó PK đi qua (O), thật vậy:

Gọi DP,EP,FP cắt đường tròn (K) lần thứ hai lần lượt tại M,N,Q.

Theo hệ thức lượng đường tròn: PA.PD = PB.PE = PC.PF => Tứ giác BCFE nội tiếp

Nên ta có: ^MNQ = ^MNE + ^ENQ = ^MDE + ^EFQ = ^ABP + ^CBP = ^ ABC.

Hoàn toàn tương tự: ^MQN = ^ACB. Từ đó suy ra \(\Delta\)ABC ~ \(\Delta\)MNQ (g.g)

Hai tam giác này có tâm ngoại tiếp tương ứng là O,K nên \(\Delta\)AOC ~ \(\Delta\)MKQ (g.g)

=> \(\frac{OC}{KQ}=\frac{AC}{MQ}\). Bên cạnh đó ^DMQ = ^DFQ = ^CAP nên AC // MQ.

Theo hệ quả ĐL Thales có: \(\frac{AC}{MQ}=\frac{PC}{PQ}\). Từ đây \(\frac{OC}{KQ}=\frac{PC}{PQ}\) (1)

Ta lại có ^OCP = ^ACP - ^OCA = ^MQP - ^KQM = ^KQP (2)

Từ (1) và (2) suy ra \(\Delta\)COP ~ \(\Delta\)QKP (c.g.c) => ^CPO = ^QPK

Mà ba điểm C,P,Q thẳng hàng nên ba điểm O,P,K cũng thẳng hàng. Do vậy PK đi qua O cố định (đpcm).

20 tháng 5 2018

Ta có BOC=120o ;BKC =60o suy ra BOC +BKC =180 nên tứ giác BOCK ni tiếp đường tròn.

Ta có OB=OC=R suy ra OB= OC=> BKO= CKO  hay KO là phân giác góc BKC theo phần (a) KA

22 tháng 3 2018

Tự vẽ hình nha, 

Câu a, Ta có : tứ giác AHMK là hình chữ nhật nên MK=AH và HM=AK 

Mà HM, MK lần lượt là bán kính của (H) và (M)

Xét tam giác HAK có : theo bđt tam giác : HA-HB<HK<HA+HK 

Hay MK-MH<HK<MH+MK => hai đường tròn luôn cắt nhau ( giả sử MK>MH)

28 tháng 3 2018

Ta có \(\widehat{NMH}=\widehat{NCB};\widehat{NMK}=\widehat{NBC}\)

Do AKMH là hình chữ nhật nên

\(\widehat{NMH}+\widehat{NMK}=90\Rightarrow\widehat{NCB}+\widehat{NBC}=90\)

\(\Rightarrow\widehat{BNC}=90\). Vẽ hình vuông ABEC

Ta có A, N, B, E, C cùng thuộc đường tròn đường kính BC cố định

Ta lại có \(\widehat{NEB}=\widehat{NCB}\)mà \(\widehat{NCB}=\widehat{NMH}\)

\(\widehat{NEB}=\widehat{NMH}\), do \(MH//EB\)nên ba điểm N, M, E thẳng hàng. Vậy MN luôn đi qua điểm E cố định

25 tháng 9 2018

Ai làm hộ mình với