Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có đáy BC cố định, diện tích không đổi nên chiều cao AH không đổi vì thế đỉnh A chuyển động trên một đường thẳng song song với BC và cách BC một khoảng bằng h không đổi.
Vậy trọng tâm G của tam giác chạy trên đường thẳng song song BC và cách BC một khoảng h/3.
Gọi h (AH) là đường cao của \(\Delta ABC\) thì h là hằng số không đổi và cạnh đáy BC bằng a cố định .
Ta có : \(S_{ABC}=\dfrac{1}{2}BC.AH=\dfrac{1}{2}a.h\) không đổi .
Vậy diện tích tam giác ABC luôn không đồi nếu có đáy BC cố định và đỉnh A di động trên 1 đường thẳng d cố định song song với đường thẳng BC .
Đường thẳng d cố định song song với đường thẳng BC cố định nên khoảng cách hai đường thẳng d và BC là không đổi.
Tam giác ABC có cạnh đáy BC không đổi, chiều cao AH là khoảng cách giữa 2 đường thẳng song song không đổi.
Vậy điểm A thay đổi trên đường thẳng d // AB thì diện tích tam giác ABC không đổi.
Gọi h là đường cao của tam giác ABC thì h là hằng số không đổi và cạnh đấy BC = a cố định.
Ta có \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}ah\) không đổi.
Vậy có đpcm
a) Xét tam giác DBI và tam giác BAH có:
\(\widehat{DIB}=\widehat{BHA}=90^o\)
BD = AB (Tam giác ABD vuông cân tại B)
\(\widehat{DBI}=\widehat{BAH}\) (Cùng phụ với góc ABH)
Vậy nên \(\Delta DBI=\Delta BAH\)(Cạnh huyền góc nhọn)
\(\Rightarrow DI=BH.\)
Tương tự ta chứng minh được EK = CH.
b) Gọi J là trung điểm DE. Do DI và EK cùng vuông góc bới BC nên chúng song song nhau.
Từ J kẻ, JM // DI // EK. Khi đó \(JM\perp BC.\)
Xét hình thang DIKE ta thấy ngay JM chính là đường trung bình của hình thang. Vậy M là trung điểm IK.
Lại có theo câu a, \(\Delta DBI=\Delta BAH\Rightarrow IB=AH\), tương tự KC = AH.
Vậy thì MB = MC hay JM là đường trung tuyến tam giác JBC.
Vậy thì \(JM=\frac{DI+EK}{2}=\frac{BH+CH}{2}=\frac{BC}{2}\)
Xét tam giác JBC có đường trung tuyến bằng một nửa cạnh huyền nên nó là tam giác vuông. Lại có JM đồng thời là đường cao nên tam giác JBC vuông cân tại J. Do BC cố định nên J cố định.
Vậy DE luôn đi qua một điểm cố đỉnh, là đỉnh J nằm cùng phía A so với BC và thỏa mãn tam giác JBC vuông cân tại J.
Kẻ AK vuông góc BC. Gọi G là trọng tâm tam giác ABC và N là trung điểm BC. Kẻ GI vuông góc với AK
\(\Rightarrow\)GI // BC
\(\Rightarrow\frac{IK}{AK}=\frac{IK}{3}=\frac{GN}{AN}=\frac{1}{3}\)
\(\Rightarrow IK=1\)
Mà IK chính là khoản cách từ G đến BC
Vậy trọng tâm G nằm trên đường thẳng song song với BC và cách BC 1 khoản là 1 cm
Dựng đường cao AH (H thuộc BC)
Dựng trung tuyến AM, G là trọng tâm \(\Rightarrow\frac{MG}{AM}=\frac{1}{3}\)
\(S_{ABC}=\frac{BC.AH}{2}\) Ta có \(S_{ABC}\) không đổi, BC cố định không đổi => AH không đổi => A chạy trên đường thẳng d//BC
Từ G dựng GK//AH (K thuộc BC)
\(\Rightarrow\frac{MG}{AM}=\frac{KG}{AH}=\frac{1}{3}\) (Talet trong tam giác) \(\Rightarrow KG=\frac{AH}{3}\) không đổi
Mà GK//AH, AH vuông góc với BC => GK vuông góc với BC => G chạy trên đường thẳng //BC cách BC 1 khoảng không đổi\(=\frac{AH}{3}\)