Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA
A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)
\(CI\perp AD\Rightarrow\widehat{CID}=90^o\)
\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> BH // CI (ĐPCM)
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)
XÉT \(\Delta AHB\)VUÔNG TẠI H
\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)
từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)
XÉT \(\Delta ABH\)VÀ\(\Delta CAI\)CÓ
\(\widehat{H}=\widehat{I}=90^o\)
AB = AC (gt)
\(\widehat{ABH}=\widehat{IAC}\)(CMT)
=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)
=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )
a: Xét ΔBAE và ΔBME có
BA=BM
AE=ME
BE chung
=>ΔBAE=ΔBME
b: Xet ΔBAK và ΔBMK có
BA=BM
góc ABK=góc MBK
BK chung
=>ΔBAK=ΔBMK
=>góc BMK=90 độ
=>MK vuông góc AC
c: Xét tứ giác KFMQ có
MF//KQ
MF=KQ
=>KFMQ là hình bình hành
=>MQ//FK
=>góc CMQ=góc CBK=góc ABK
a: XétΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
XétΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
XÉT TAM GIÁC ABH VÀ ACH CÓ
AH CHUNG
GÓC AHB= GÓC AHC
GÓC B=GÓC C
=>TAM GIÁC ABH = TAM GIÁC ACH (CH-GN)
do tam giác abc cân tại a
=>góc abc=180-2*góc a
do am=an
=>tam giác amn can taị a
=>góc amn=180-2*góc a
=>góc amn=góc abc(vì cùng bằng
180-2*góc a)
mà hai góc này ở vị trí so le trong
=>mn song song vs ab
xét 2 tam giác abn và acm có
chung góc a
am=an
ab=ac
=>tg abn=tg acm
=>bm=cm(2 cạnh tương ứng)
cau 2
theo đề bài ta có
tg abc đều =>ab=bc=ca
ad=be=cf
=>ab-ad=bc-be=ac-cf
hay bd=ce=af
xét 3 tg ade,bed và cef ta có
góc a=gócb=gócc
ad=be=cf
bd=ce=af
=> tg ade= tg bed= tg cef
=>de=df=ef
=>tg def là tg đều
Bài rất hay !
a) Xét tam giác ABM và tam giác ANM có
\(\widehat{BAM}\) = \(\widehat{NAM}\) (Vì AM là phân giác góc A)
AB = AN (gt)
Chung AM
=> Tam giác ABM = Tam giác ANM (c.g.c)
b) Ta có \(\widehat{ABM}\)+\(\widehat{EBE}\) = 180 độ
\(\widehat{ANM}\) + \(\widehat{CNM}\) = 180 độ
mà \(\widehat{ABM}\)=\(\widehat{ANM}\)(Vì tam giác ABM = Tam giác ANM)
=> \(\widehat{EBE}\)= \(\widehat{CNM}\)
Lại có BM = NM (Vì tam giác ABM = Tam giác ANM)
Xét tam giác BME và Tam giác NMC có
\(\widehat{EBE}\) =\(\widehat{CNM}\)
BM = NM
\(\widehat{BME}\) = \(\widehat{NMC}\) (Đối đỉnh)
=> Tam giác BME = Tam giác NMC (c.g.c)
=> BE = NC (2 cạnh tương ứng)
c) Xét tam giác ABN
Có AB = AN (gt) => Tam giác ABN cân
=> Đường phân giác cũng là đường cao => AM vuông góc với BN (1)
Ta có BE = NC (cmt)
AB = AN
mà AE = AB+BE, AC = AN + CN
=> AE = AC
=> Tam giác AEC cân
=> đường phân giác cũng là đường cao => AM Vuông góc với EC (2)
Từ (1), (2) => BN // EC (Cùng vuông góc với AM) - đpcm
Mình vẽ nhầm N thành C trên hình. bạn sửa lại dùm nhé ^^