K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016

bài 2:

ta có : điểm M nằm trên đường trung trực của BC nên M sẽ cách đều B và C => MB=MC

Ta có: AC=AM+MC

=> AC=AM+MB

15 tháng 5 2016

Bài 2: Tam giác BNC cân tại N vì đường thẳng hạ từ N xuống vuong góc cạnh đối diện cũng là trung tuyến nên BN=NC

=> AN+BN=AN+NC=AC 

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...

2 tháng 2 2016

Mik mới lớp 6 thui sorry bạn

2 tháng 2 2016

minh moi hok lop 6 thoi

24 tháng 3 2022

a, Xét tam giác ABC cân tại A có AM là trung tuyến 

=> AM đồng thời là đường cao => AM vuông BC 

b, Ta có BM = BC/2 = 3/2 cm 

Theo định lí Pytago tam giác AMB vuông tại M

\(AM=\sqrt{AB^2-BM^2}=\dfrac{\sqrt{91}}{2}cm\)