K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2016

qua c ke dt sông song AD cat đường thẳng AB tại E, ròi chung minh tam giac AEC la tam giac cân, su dung gt va tính chất đường phân giac chúng minh tiếp tam giac ACE là tam giác đều. từ đó suy ra góc BAC bằng 120

11:

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot6\cdot12}{6+12}\cdot\dfrac{1}{2}=4\left(cm\right)\)

12:

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot3\cdot6}{3+6}\cdot\dfrac{1}{2}=\dfrac{3\cdot6}{3+6}=\dfrac{18}{9}=2\left(cm\right)\)

15 tháng 2 2016

moi hok lop 6 thôi bạn 

15 tháng 2 2016

You no need to comment

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 1:

Không mất tổng quát giả sử $AB< AC$

Gọi $AH$ là phân giác $\widehat{BAC}$. Theo tính chất tia phân giác:

$\frac{BH}{CH}=\frac{AB}{AC}\Rightarrow \frac{BC}{CH}=\frac{AB+AC}{AC}$

Ta có:

$\frac{HN}{HC}=\frac{BN-BH}{HC}=\frac{BN}{HC}-\frac{BH}{HC}=\frac{BC}{2HC}-\frac{BH}{HC}=\frac{AB+AC}{2AC}-\frac{AB}{AC}$

$=\frac{AC-AB}{2AC}=\frac{AC-CD}{2AC}=\frac{AD}{2AC}=\frac{AM}{AC}$

Theo định lý Talet đảo suy ra $MN\parallel AH$

Ta có đpcm.

 

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Hình vẽ 1:

undefined

a: BC=BD+CD

=15+20

=35(cm)

Xét ΔABC có AD là phân giác

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)

=>\(\dfrac{AB}{15}=\dfrac{AC}{20}\)

=>\(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)

=>AB=3k; AC=4k

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(\left(3k\right)^2+\left(4k\right)^2=35^2\)

=>\(25k^2=1225\)

=>\(k^2=49\)

=>k=7

=>\(AB=3\cdot7=21\left(cm\right);AC=4\cdot7=28\left(cm\right)\)

b: 

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot21\cdot28=294\left(cm^2\right)\)

\(\dfrac{BD}{BC}=\dfrac{15}{35}=\dfrac{3}{7}\)

=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot294=126\left(cm^2\right)\)

Ta có: \(S_{ABD}+S_{ACD}=S_{ABC}\)

=>\(S_{ACD}+126=294\)

=>\(S_{ACD}=168\left(cm^2\right)\)

a: Xét ΔCDE và ΔCAB có 

\(\widehat{CDE}=\widehat{CAB}\)

\(\widehat{C}\) chung

Do đó: ΔCDE\(\sim\)ΔCAB

Câu b đề sai rồi bạn