Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ ạ.
a, Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(\dfrac{AD}{AB}=\dfrac{7}{14}=\dfrac{1}{2}\)
\(\dfrac{AE}{AC}=\dfrac{10}{20}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{2}\right)\)
Mà \(\widehat{A}:chung\)
\(\Rightarrow\Delta ADE\sim\Delta ABC\left(c-g-c\right)\)
b, Ta có : \(\Delta ADE\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{ED}{BC}\)
hay \(\dfrac{7}{14}=\dfrac{ED}{18}\)
\(\Rightarrow ED=\dfrac{7.18}{14}=9\left(cm\right)\)
a: Xét ΔADB vuông tại D và ΔCAB vuông tại A có
góc B chung
=>ΔADB đồng dạng với ΔCAB
b: BC=căn 12^2+9^2=15cm
AD=12*9/15=7,2cm
a: Xét ΔABE và ΔADC có
góc ABE=góc ADC
góc EAB=góc CAD
=>ΔABE đồng dạng với ΔADC
b Xét ΔDAC và ΔDBE có
góc ADC=góc BDE
góc DAC=góc DBE
=>ΔDAC đồng dạng với ΔDBE
=>DA/DB=DC/DE
=>DA*DE=DB*DC
Hình tự vẽ nha
xét tam giác ADB và tam giác ABC có
\(\widehat{ADB}=\widehat{ABC} (GT)\)
\(\widehat{A} chung\)
=> tam giác ADB đồng dạng vs tam giác ABC (g-g)
=> \(\dfrac{AD}{AB}=\dfrac{AB}{AC} (TSĐD)\)(1)
xét tam giác ABC có
AE là PG của góc A
E ∈ BC
=>\(\dfrac{EB}{EC}=\dfrac{AB}{AC} (TC \) tia pg trong tam giác) (2)
từ 1 và 2 =>\(\dfrac{AD}{AB}=\dfrac{EB}{EC}\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔACB có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó:BD=30/7cm; CD=40/7cm
a: Xét ΔCDE và ΔCAB có
\(\widehat{CDE}=\widehat{CAB}\)
\(\widehat{C}\) chung
Do đó: ΔCDE\(\sim\)ΔCAB
Câu b đề sai rồi bạn