K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

a, ta có ^MDB=^FCD ( đồng vị)

mà ^EBD= ^ FCD ( tam giác ABC đều)

=> ^MDB=^EBD 

=> tứ giác EMDB là hình thang cân

CMTT: 2 tứ giác còn lại

b, chu vi của DEF = 15 hay DE+EF+FD=15 mà DE=BM, EF=AM, FD=MC( theo tính chất của hình thang cân )

=> AM+ MB + MC=15

28 tháng 7 2017

a. ta có: \(\widehat{ADM}=\widehat{ABC}\)( đồng vị và MD // BC)
    và  \(\widehat{DAF}=\widehat{ABC}\) ( \(\Delta ABC\)đều)
    suy ra \(\widehat{DAF}=\widehat{ADM}\)
hình thang \(ADMF\) ( MF // AD) có \(\widehat{DAF}=\widehat{ADM}\)nên là hình thang cân

17 tháng 12 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2+6^2=10^2\)

=>\(AC^2=100-36=64\)

=>\(AC=\sqrt{64}=8\left(cm\right)\)

b: Xét tứ giác ADME có

AD//ME

AE//MD

Do đó: ADME là hình bình hành

Hình bình hành ADME có \(\widehat{DAE}=90^0\)

nên ADME là hình chữ nhật

c: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{1}{2}BC\)

Ta có: DE//BC

M\(\in\)BC

Do đó: DE//MB

Ta có: \(DE=\dfrac{1}{2}BC\)

\(MC=MB=\dfrac{1}{2}BC\)

Do đó: DE=MC=MB

Xét tứ giác BDEM có

DE//MB

DE=MB

Do đó: BDEM là hình bình hành

d: Xét tứ giác ABCK có

E là trung điểm chung của AC và BK

=>ABCK là hình bình hành

=>AK//BC

Xét tứ giác AMCI có

E là trung điểm chung của AC và MI

=>AMCI là hình bình hành

=>AI//CM

=>AI//BC

Ta có: AI//BC

AK//BC

AI,AK có điểm chung là A

Do đó: A,I,K thẳng hàng

17 tháng 8 2016

Bn viết đúng đề k ạ