K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tha khảo

 vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2 
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3 
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3 
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1) 
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp 
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4 
=>p^2-1 chia hết cho 8 (2) 
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3

20 tháng 1 2020

Bài 1: 

A B C I E D H

Vẽ \(IH\) là tia phân giác của \(\widehat{AIC}\)

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=180^0-60^0=120^0\)

Ta có: \(AD\) là tia phân giác của \(\widehat{A}\left(1\right)\)

Và: \(CE\) là tia phân giác của \(\widehat{C}\left(2\right)\) 

Từ   \(\left(1\right)\left(2\right)\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{120^0}{2}=60^0\)

Lại có: \(\widehat{EIA}=\widehat{IAC}+\widehat{ICA}=60^0=\widehat{AIH}\)

Xét \(\Delta EAI\) và \(\Delta HAI\) có:

\(\widehat{EAI}=\widehat{HAI}\left(AD-là-tia-p.giác-của\widehat{A}\right)\)

\(\widehat{AIE}=\widehat{AIH}\left(cmt\right)\)

\(AI\) chung

\(\Rightarrow\Delta AIE=\Delta AIH\left(g-c-g\right)\)

\(\Rightarrow IE=IH\left(1\right)\)

Chứng minh tương tự \(\Delta CHI=\Delta CDI\left(g-c-g\right)\Rightarrow ID=IH\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow IE=ID\)

\(\Rightarrow\Delta IDE\) cân tại \(I\left(đpcm\right)\)

21 tháng 1 2020

2. A B C H K D E

Trên cạnh BC lấy điểm E sao cho BE = BD => \(\Delta\)DBE cân tại B (1)

=> BD = BE 

Ta có: BD là phân giác ^ABC  => ^DBE = 40\(^{^o}\): 2 = 20\(^o\)(2)

(1) ; (2) => ^BDE = ^DED = ( 180\(^o\)- 20\(^o\)) : 2 = 80\(^o\)

=> ^DEC = 180\(^o\)- 80\(^o\)=100\(^o\)

Xét \(\Delta\)DEC có: ^EDC = 180\(^o\)- ^DEC - ^DCE = 180\(^o\)-100\(^o\)-40\(^o\)=40\(^o\)

=> \(\Delta\)DEC cân tại E => DE = EC (3)

Từ D kẻ vuông góc với BC tại H và BA tại K.

D thuộc đường phân giác ^ABC  ( theo t/c đường phân giác ) => DK = DH 

Vì ^BAC = ^DEC = 100\(^o\)=> ^KAD = ^HED 

=> \(\Delta\)KAD = \(\Delta\)HED ( cạnh góc vuông - góc nhọn )

=> DA = DE (4)

Từ (3) ; (4) => DA = EC 

Vậy BC = BE + EC = BD + AD

12 tháng 8 2017

có 3 bài tham khảo

câu hỏi

1) cho tam giác ABC(AB<AC). từ trung điểm M của BC kẻ đường vuông góc với tia phân giác góc A cắt AB, AC và tia phân giác góc A lần lượt tại D,E,H. Chứng minh BD=CM. 
2) cho tam giác ABC vẽ BH vuông góc AC. Gọi M là trung điểm AC biết góc ABH= góc HBM = góc MBC. tính các góc của tam giác ABC 
3) cho tam giác ABC, góc B =60 độ. hai tia phân giác AD và CE của tam giác ABC cắt nhau tại I. chứng minh IE=ID

bài làm

Vì nếu BD = CM có nghĩa BD = BM ( Vì M là trung điểm của BC) 
--> Tam giác BDM phải cân tại B 
--> góc BDM = góc BMD (1) 
Xét tam giác ADE có đường cao AH vừa là phân giác nên là tam giác cân tại A. 
--> góc ADE = góc AED (2) 
từ (1) và (2) --> góc BMD = góc AED 
nên điều này là vô lý vì từ điểm C kẻ được 2 đường thẳng song song là CB và AC . 
Bài 2: 
Ta có được tam giác ABM cân tại B (vì có AH vừa là đường cao vừa là phân giác ) 
--> AH = HM = 1/2 AM = 1/2 MC. 
Xét tam giác BCH có BM là phân giác góc B nên MH/MC = BH/BC = 1/2 
mà góc BHC = 1 vuông nên suy ra HBC = 60 độ, góc C = 30 độ. 
từ đó suy ra tam giác ABC có góc B = 90, C = 30 và A = 60 độ. 
Bài 3. 
Dễ dàng c/m được góc EID = 120 độ 
--> tứ giác BDIE nội tiếp được. 
--> góc IED = IBD và góc IDE = góc IBE (hai góc nội tiếp cùng chắn 1 cung) 
mà góc EIB = góc IBD (T/c ba đường phân giác của tam giác) 
--> góc IED = góc IDE 
--> tam giác IED cân tại I --> IE = ID

11 tháng 3 2018

đề giống như trên nhưng câu hỏi của mình khác bạn nào giúp mình nha

a,Tính góc AIC

b,Tính độ dài cạnh AK biết PK=6cm,AH=4cm

c,CM tam giác IDE cân

7 tháng 2 2020

ib mình face mình đưa bài cho

7 tháng 2 2020

Sai đề ở chỗ m của bc kẻ đường vuông ai tại H chấm hết , bài này bạn ra ak ? 

Trên AC lấy F sao cho AE=AF

Xét ΔAEI và ΔAFI co

AE=AF

góc EAI=góc FAI

AI chung

Do đó: ΔAEI=ΔAFI

=>EI=FI

góc IAC=180 độ-góc IAC-góc ICA

=180 độ-1/2*120

=120 độ

=>góc AIE=góc DIC=60 độ

góc AIF=góc AIE=60 độ

Xet ΔDIC và ΔFIC có

góc DCI=góc FCI 

CI chung

góc DIC=góc FIC

Do đó: ΔDIC=ΔFIC

=>ID=IF

=>ID=IE

=>ΔIDE cân tại I

9 tháng 1 2018

Bố mày chịu