K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

có 3 bài tham khảo

câu hỏi

1) cho tam giác ABC(AB<AC). từ trung điểm M của BC kẻ đường vuông góc với tia phân giác góc A cắt AB, AC và tia phân giác góc A lần lượt tại D,E,H. Chứng minh BD=CM. 
2) cho tam giác ABC vẽ BH vuông góc AC. Gọi M là trung điểm AC biết góc ABH= góc HBM = góc MBC. tính các góc của tam giác ABC 
3) cho tam giác ABC, góc B =60 độ. hai tia phân giác AD và CE của tam giác ABC cắt nhau tại I. chứng minh IE=ID

bài làm

Vì nếu BD = CM có nghĩa BD = BM ( Vì M là trung điểm của BC) 
--> Tam giác BDM phải cân tại B 
--> góc BDM = góc BMD (1) 
Xét tam giác ADE có đường cao AH vừa là phân giác nên là tam giác cân tại A. 
--> góc ADE = góc AED (2) 
từ (1) và (2) --> góc BMD = góc AED 
nên điều này là vô lý vì từ điểm C kẻ được 2 đường thẳng song song là CB và AC . 
Bài 2: 
Ta có được tam giác ABM cân tại B (vì có AH vừa là đường cao vừa là phân giác ) 
--> AH = HM = 1/2 AM = 1/2 MC. 
Xét tam giác BCH có BM là phân giác góc B nên MH/MC = BH/BC = 1/2 
mà góc BHC = 1 vuông nên suy ra HBC = 60 độ, góc C = 30 độ. 
từ đó suy ra tam giác ABC có góc B = 90, C = 30 và A = 60 độ. 
Bài 3. 
Dễ dàng c/m được góc EID = 120 độ 
--> tứ giác BDIE nội tiếp được. 
--> góc IED = IBD và góc IDE = góc IBE (hai góc nội tiếp cùng chắn 1 cung) 
mà góc EIB = góc IBD (T/c ba đường phân giác của tam giác) 
--> góc IED = góc IDE 
--> tam giác IED cân tại I --> IE = ID

11 tháng 3 2018

đề giống như trên nhưng câu hỏi của mình khác bạn nào giúp mình nha

a,Tính góc AIC

b,Tính độ dài cạnh AK biết PK=6cm,AH=4cm

c,CM tam giác IDE cân

9 tháng 1 2018

Bố mày chịu

7 tháng 2 2020

ib mình face mình đưa bài cho

7 tháng 2 2020

Sai đề ở chỗ m của bc kẻ đường vuông ai tại H chấm hết , bài này bạn ra ak ? 

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:

a) Áp dụng định lý tổng 3 góc trong một tam giác ta có:

$\widehat{AIC}=180^0-(\widehat{IAC}+\widehat{ICA})=180^0-\frac{\widehat{A}+\widehat{C}}{2}$

$=180^0-\frac{180^0-\widehat{B}}{2}=180^0-\frac{180^0-60^0}{2}=120^0$

b) 

Xét tam giác $APK$ có $AH$ đồng thời là đường cao và đường phân giác nên $APK$ là tam giác cân tại $A$

Do đó: đường cao $AH$ đồng thời cũng là đường trung tuyến.

$\Rightarrow HK=\frac{1}{2}PK=\frac{1}{2}.6=3$ (cm)

Áp dụng định lý Pitago: $AK=\sqrt{AH^2+HK^2}=\sqrt{4^2+3^2}=5$ (cm)

c) 

Kẻ phân giác $IT$ của $\widehat{AIC}$ thì $\widehat{AIT}=\widehat{CIT}=60^0$ 

$\widehat{AIE}=\widehat{CID}=180^0-\widehat{AIC}=60^0$

Xét tam giác $AEI$ và $ATI$ có:

$\widehat{EAI}=\widehat{TAI}$

$\widehat{AIE}=\widehat{AIT}=60^0$ (cmt)

$AI$ chung

$\Rightarrow \triangle AEI=\triangle ATI$ (g.c.g)

$\Rightarrow IE=TI(1)$

Tương tự: $\triangle CTI=\triangle CDI$(g.c.g)

$\Rightarrow TI=DI(2)$

$(1);(2)\Rightarrow IE=ID$ nên $IDE$ là tam giác cân tại $I$.

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Hình vẽ:

undefined

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

19 tháng 1 2017

1. A B C D F 1 2 2 1 1 2. A B H D M C

1.Lấy F trên AC sao cho AB = AF mà AB < AC => AF < AC => F nằm giữa A,C

\(\Delta ADB,\Delta ADF\)có AD chung ; AB = AF ;\(\widehat{A_1}=\widehat{A_2}\)(AD là phân giác góc BAC)\(\Rightarrow\Delta ADB=\Delta ADF\left(c.g.c\right)\)

\(\Rightarrow\widehat{D_1}=\widehat{D_2}\); DB = DF mà\(\widehat{F_1}>\widehat{D_1};\widehat{D_2}>\widehat{C}\)(\(\widehat{F_1};\widehat{D_1}\)lần lượt là góc ngoài\(\Delta ADF,\Delta ADC\))nên\(\widehat{F_1}>\widehat{C}\)

\(\Delta DFC\)\(\widehat{F_1}>\widehat{C}\)nên DC > DF = DB.Vậy BD < CD

2.Theo chứng minh câu 1,ta được BD < CD

\(\Rightarrow BC=BD+CD=2BD+CD-BD\Rightarrow2BD< BC\Rightarrow BD< \frac{BC}{2}\left(=BM\right)\)

=> D nằm giữa B,M => AD nằm giữa AB,AM (1)

\(\Delta ABC\)có AB < AC nên\(\widehat{B}>\widehat{C}\)\(\widehat{BAH}=90^0-\widehat{B};\widehat{CAH}=90^0-\widehat{C}\)(vì\(\Delta AHB,\Delta AHC\)vuông tại H)

\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)

\(\Rightarrow\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=2\widehat{BAH}+\widehat{CAH}-\widehat{BAH}\Rightarrow2\widehat{BAH}< \widehat{BAC}\Rightarrow\widehat{BAH}< \frac{\widehat{BAC}}{2}\left(=\widehat{BAD}\right)\)

=> AH nằm giữa AB,AD (2).Từ (1) và (2),ta có đpcm

3 tháng 8 2018

làm như ngu