Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Xét tam giác DMB và tam giác MAN có : MA=MB ; góc MBD = góc MAN ( vì hai góc sole trong) ; góc AMN=góc BMD ( vì hai góc đối đỉnh) vậy tam giác DMB = tam giác MAN ( G-C-G) suy ra : MN=MD mà ta lại có MNsong song với BC và bằng 1/2 BC vậy suy ra : MN+MD=BC mà ta lại có MN song song với BC suy ra DN cũng song song với BC vậy Tứ giác BDNC là hình bình hành
B) Tứ giác BDNH là hình thang cân Do: DN song song với BH vậy tứ giác DNHB là (hình thang)* mà ta lại có : AN = DB ; AN=NH ( vì đường trung tuyến ứng với cạnh huyền) vậy DH = NH** từ (*) và (**) suy ra : tứ giác BDNH là hình thang cân
a: Xét tứ giác AEMD có
góc AEM=góc ADM=góc DAE=90 độ
nên AEMD là hình chữ nhật
b: Vì M đối xứng với N qua AB
nên ABvuông góc với MN tại E và E là trung điểm của MN
Xét tứ giác AMBN có
E là trung điểm chung của AB và MN
nên AMBN là hình bình hành
mà MA=MB
nên AMBN là hình thoi
c: Xét tứ giác ANMC có
NM//AC
NM=AC
Do đó: ANMC là hình bình hành
=>AM cắt CN tại trung điểm của mỗi đường
=>C,O,N thẳng hàg
a,vi bh la dung cao ad h la trung diem ad suy ra tam giac bda can tai b suy ra b=180-bad/2 (1)
vimh vuong goc ad h la trung diem ad suy ra tam giac dma can tai m suy ra m=180-adm/2 ( 2)
vi ab//dn suy ra bad=adm (3)
tu 1 2 3 suy ra abd=dma (4)
vi tam giac abd can tai b suy ra bad=bda (5)
tam giac abm can tai m suy ra adm=dam (6)
tu 3 5 6 suy ra bda=dam suy ra bam=bdm (7)
tu 4 va 7 suy ra tu giac bdma la hinh binh hanh co bm vung goc ad suy ra tu giac abdm la hinh thoi
b,vi dn vung goc ac ch vuong goc voi ad ch va dn cat nhau tai m suy ra m la truc tam cua tam giac acd
c,