K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

a. Xét tam giác ABC có: 

AB2+AC2= 62+82= 36+64= 100=102=BC2 (định lý Pytago đảo)

=> Tam giác ABC vuông tại A

b. Xét hình tứ giác AEFB có

Góc EAF= 90 độ (Tam giác ABC vuông tại A)

Góc AEH= 90 độ ( HE là hình chiếu của E trên AB)

Góc HFA= 90 độ ( HF là hình chiếu của F trên AC)

=> Tứ giác AEHF là hình chữ nhật

\(\)CH = \(\dfrac{64}{10}\) = 6,4

Theo định lý Pytago ta có :

AH2=82-6,42= 23,04

AH= 4,8

Vì trong hình chữ nhật hai đường chéo bằng nhau nên ta có

AH=EF= 4,8

c. Theo hệ thức về cạnh góc vuông ta có

AE.AB= AH2 ( Tam giác BHA vuông tại H)

AF. AC= AH2 (Tam giác CHA vuông tại H)

=> AE.AB=AF.AC

d mình không biết làm

 

 

 

16 tháng 10 2021

Mình cảm ơn bạn nhéyeu

 

29 tháng 5 2018

1,

+, tính BC

\(BC^2=AB^2+AC^2\Rightarrow BC^2=5^2+12^2=25+144=169\)

\(\Rightarrow BC=\sqrt{169}=13\left(cm\right)\)

+, Tính AH 

\(AH\cdot BC=AB\cdot AC\Rightarrow AH=\frac{AB\cdot AC}{BC}=\frac{5\cdot12}{13}=\frac{60}{12}\left(cm\right)\)

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Lời giải:
a. Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm) 

$AH=2S_{ABC}:BC=AB.AC:BC=6.8:10=4,8$ (cm) 

$\sin B = \frac{AC}{BC}=\frac{8}{10}=\frac{4}{5}$

b.

Áp dụng hệ thức lượng trong tam giác vuông ta có:

$BE.BA=BH^2$

$AF.AC=AH^2$
$\Rightarrow BE.BA+AF.AC=BH^2+AH^2=AB^2$ (đpcm)

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Hình vẽ:

30 tháng 9 2019

câu hỏi tương tự