Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo gt ta có : AB = AC
=> tam giác ABC cân tại A
=> góc B = góc C *
Xét tam giác ABD và tam giác ACE có :
+ AB = AC(gt)
+ góc B = góc C ( theo * )
+ BD = CE (gt)
=> tam giác ABD = tam giác ACE ( c . g .c )
=> AD = AE ( 2 cạnh tương ứng )
b) Ta có : DM vuông góc với BC, EN vuông góc với BC
=> tam giác MBD và tam giác NCE là tam giác vuông
Xét : tam giác vuông MBD ( góc D = 90\(^o\)) và tam giác vuông NCE ( góc E = 90\(^o\)) có :
+ BD = CE (gt)
+ góc B = góc C ( theo * )
=> tam giác vuông MBD = tam giác vuông NCE ( cạnh góc vuông + góc nhọn )
c) theo CM ý b) ta có : tam giác MBD = tam giác NCE
=> BM = CN (2 cạnh tương ứng )
Mà :MA + BM = AB, AN + CN = AC
Lại có : AB = AC (gt)
=> AM = AN
=> tam giác AMN cân tại A
Nếu : ABC là tam giác đều
=> góc A = 60\(^o\)
=> tam giác AMN là tam giác đều ( tam giác đều là tam giác cân có 1 góc bằng 60\(^o\))
a: Xét ΔMHB vuông tại H và ΔNKC vuông tại K có
BM=CN
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMHB=ΔNKC
b: Ta có: ΔMHB=ΔNKC
nên HB=KC
Ta có: AH+HB=AB
AK+KC=AC
mà BA=AC
và HB=KC
nên AH=AK
c: Xét ΔAHM vuông tại H và ΔAKN vuông tại K có
AH=AK
HM=KN
Do đó: ΔAHM=ΔAKN
Suy ra: AM=AN
. + vì tam giác ABC là tam giác cân
=> AB=AC ( hai cạnh bên bằng nhau)
Lại có: vì góc AHC bằng 90o (gt) (1)
Mà: AHB+ AHC= 180o ( hai góc kề bù)
Từ (1) và (2) ta suy ra:
AHB= 90o và tam giác AHB là tam giác vuông
a) xét tam giác vuông ABH và tam giác ACH:
AB= AC ( cmt)
Và AHB= AHC= 90o ( cmt)
=> tam giác ABH= tam giác ACH( ch-gv)
Do đó: BH = CH ( hai cạnh tương ứng)
Vậy: H là trung điểm của BC ( đpcm)
( mình chỉ làm được câu a thoii, sorry bạn nhiều nha) 😍😘
CHÚC BẠN HỌC TỐT NHA!
a) Xét \(\Delta AHB\)và \(\Delta AHC\)có :
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(AB=AC\)\((\Delta ABC\)cân \()\)
AH chung
\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-cgv\right)\)
\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )
\(\Rightarrow\)H là trung điểm của BC
b) Xét \(\Delta MBH\)và \(\Delta NCH\)có :
\(BM=CN\left(gt\right)\)
\(\widehat{B}=\widehat{C}\)\((\Delta ABC\)cân \()\)
\(BH=HC\left(cmt\right)\)
\(\Rightarrow\Delta MBH=\Delta NCH\left(c.g.c\right)\)
\(\Rightarrow\widehat{BMH}=\widehat{CNH}\)( 2 góc tương ứng )
mà \(\widehat{BMH}=90^o\left(gt\right)\)
\(\Rightarrow\widehat{CNH}=90^o\)
\(\Rightarrow HN\perp AC\)
a ) Ta có ΔABC cân tại A .
\(\Rightarrow\) AB = AC
Có AH là đường cao
\(\Rightarrow\) AH đồng thời là trung tuyến
\(\Rightarrow\) H là trung điểm của BC
Xét ΔAHB và ΔAHC có :
AB = AC
Góc AHB = Góc AHC = 90
BH = HC
\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )
b ) Xét ΔAHB vuông tại H có .
\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)
c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .
\(\Rightarrow\) ΔABM cân tại B
d ) Ta có : BAM cân tại B
\(\Rightarrow\) Góc BAM = Góc BMA
Xét ΔBAC cân tại A có HA là trung tuyến
\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .
\(\Rightarrow\) Góc BAH = Góc CAH
\(\Rightarrow\) Góc BMA = Góc HAC
Mà 2 góc này ở vị trí so le trong của BM và AC .
\(\Rightarrow\) BM // AC
a) ( Cái này có khá nhiều cách chứng minh nhé . )
Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( tam giác ABC cân )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )
b) => HB = HC ( hai cạnh tương ứng )
Mà BC = 8cm
=> HB = HC = BC/2 = 8/2 = 4cm
Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :
AB2 = AH2 + HB2
52 = AH2 + 42
=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)
c) HM là tia đối của HA
=> ^AHB + ^BHM = 1800
=> 900 + ^BHM = 1800
=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H
Xét tam giác vuông AHB và tam giác vuông BHM ta có :
HM = HA ( gt )
^BHM = ^AHB ( cmt )
HB chung
=> Tam giác AHB = tam giác BHM ( c.g.c )
=> BM = BA ( hai cạnh tương ứng )
Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B
d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a)
Tam giác AHB = Tam giác BHM ( theo ý c)
Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM
=> ^HBM = ^ACH ( hai góc tương ứng )
mà hai góc ở vị trí so le trong
=> BM // AC ( đpcm )
( Hình có thể k đc đẹp lắm )
a) Xét tam giác ABM và tam giác ACN có :
BM = CN ( gt)
góc ABM = góc ACN ( vì tam giác ABC cân )
AB=AC ( vì tam giác ABC cân )
=> tam giác ABM = tam giác ACN ( cạnh - góc - cạnh )
=> AM =AN ( cặp cạnh tương ứng )
=> tam giác AMN cân ( điều phải chứng minh )
b)
Ta có : AB = AC ( vì tam giác ABC cân)
+ AP = AK
=> BP = CK
Xét tam giác BPN và tam giác KCN có :
BP = KC ( Chứng minh trên )
góc PBC = góc KCN ( vì tam giác ABC cân )
BM = NC ( GT )
=> Tam giác BPN = tam giác KCN ( cạnh - góc - cạnh )