Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆BAD và ∆EAD có :
AD chung
AB = AE
BAD = CAD (AD là phân giác)
=> ∆BAD = ∆EAD (c.g.c)
=> BD = DE
bl Vì BD = DE
=> ∆BDE cân tại D
=> DBE = DEB
Vì AB = AE (gt)
=> ∆ABE cân tại A
=> ABE = AEB
=> ABE + EBC = AEB + BED = ABD = AED
Mà ABD + DBF = 180° ( kề bù )
AED + DEC = 180° ( kề bù )
Mà ABD = AED (cmt)
=> DBF = DEC
Xét ∆BDF và ∆EDC có :
BD = DE
BDF = EDC ( đối đỉnh )
DBF = DEC ( cmt)
=> ∆BDF = ∆EDC (g.c.g)
a)
Xét ΔABD và ΔAED có:
AB=AE (giả thiết)
Góc BAD= góc EAD (do AD là phân giác góc A)
AD chung
⇒⇒ ΔABD=ΔAED (c-g-c)
b) Ta có ΔABD=ΔAED
⇒⇒ BD=DE và góc ABD= góc AED
⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)
Xét ΔDBF và ΔDEC có:
BD=DE
Góc DBF= góc DEC
Góc BDF= góc EDC ( đối đỉnh )
⇒⇒ ΔDBF=ΔDEC (g-c-g)
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b:Ta có: AB=AE
DB=DE
Do đó: AD là đường trung trực của BE
1) Xét tam giác ABE và tam giác DBE có:
+ BM chung.
+ AB = DB (gt).
+ ^ABE = ^DBE (do BE là phân giác ^ABD).
=> Tam giác ABE = Tam giác DBE (c - g - c).
2) Xét tam giác ABD có: BA = BD (Tam giác ABE = Tam giác DBE).
=> Tam giác ABD cân tại B.
Mà BE là phân giác ^ABD (gt).
=> BE là đường cao (Tính chất các đường trong tam giác cân).
Lại có: BE cắt AD tại M (gt).
=> BE vuông góc AD tại M (đpcm).
3) Xét tam giác FBC có:
+ BN là trung tuyến (do N là trung điểm của CF).
+ BN là phân giác của ^FBC (do BE là phân giác ^ABD).
=> Tam giác FBC cân tại B.
=> BN là đường cao (Tính chất các đường trong tam giác cân).
=> BN vuông góc FC. (1)
Vì tam giác FBC cân tại B (cmt). => ^BCF = (180o - ^DBA) : 2.
Vì tam giác ABD cân tại B (cmt). => ^BDA = (180o - ^DBA) : 2.
=> ^BCF = ^BDA.
Mà 2 góc này ở vị trí đồng vị.
=> AD // FC (dhnb).
Mà BE vuông góc với AD tại M (cmt).
=> BE vuông góc FC. (2)
Từ (1) và (2) => 3 điểm B, E, N thẳng hàng (đpcm).