K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ∆BAD và ∆EAD có : 

AD chung 

AB = AE 

BAD = CAD (AD là phân giác) 

=> ∆BAD = ∆EAD (c.g.c)

=> BD = DE

bl Vì BD = DE 

=> ∆BDE cân tại D 

=> DBE = DEB 

Vì AB = AE (gt)

=> ∆ABE cân tại A 

=> ABE = AEB 

=> ABE + EBC = AEB + BED = ABD = AED 

Mà ABD + DBF = 180° ( kề bù )

AED + DEC = 180° ( kề bù )

Mà ABD = AED (cmt)

=> DBF = DEC 

Xét ∆BDF và ∆EDC có : 

BD = DE 

BDF = EDC ( đối đỉnh )

DBF = DEC ( cmt)

=> ∆BDF = ∆EDC (g.c.g)

a)

Xét ΔABD và ΔAED có:

AB=AE (giả thiết)

Góc BAD= góc EAD (do AD là phân giác góc A)

AD chung

⇒⇒ ΔABD=ΔAED (c-g-c)

b) Ta có ΔABD=ΔAED

⇒⇒ BD=DE và góc ABD= góc AED

⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)

Xét ΔDBF và ΔDEC có:

BD=DE

Góc DBF= góc DEC

Góc BDF= góc EDC ( đối đỉnh )

⇒⇒ ΔDBF=ΔDEC (g-c-g)

a: Xét ΔABD và ΔAED có

AB=AE
góc BAD=góc EAD

AD chung

Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b:Ta có: AB=AE

DB=DE

Do đó: AD là đường trung trực của BE

3 tháng 12 2021

1) Xét tam giác ABE và tam giác DBE có:

+ BM chung.

+ AB = DB (gt).

+ ^ABE = ^DBE (do BE là phân giác ^ABD).

=> Tam giác ABE = Tam giác DBE (c - g - c).

2) Xét tam giác ABD có: BA = BD (Tam giác ABE = Tam giác DBE).

=> Tam giác ABD cân tại B.

Mà BE là phân giác ^ABD (gt).

=> BE là đường cao (Tính chất các đường trong tam giác cân).

Lại có: BE cắt AD tại M (gt).

=> BE vuông góc AD tại M (đpcm).

3) Xét tam giác FBC có: 

+ BN là trung tuyến (do N là trung điểm của CF).

+ BN là phân giác của ^FBC (do BE là phân giác ^ABD).

=> Tam giác FBC cân tại B.

=> BN là đường cao (Tính chất các đường trong tam giác cân).

=> BN vuông góc FC. (1)

Vì tam giác FBC cân tại B (cmt). => ^BCF = (180- ^DBA) : 2.

Vì tam giác ABD cân tại B (cmt). => ^BDA = (180- ^DBA) : 2.

=> ^BCF = ^BDA.

Mà 2 góc này ở vị trí đồng vị.

=> AD // FC (dhnb).

Mà BE vuông góc với AD tại M (cmt).

=> BE vuông góc FC. (2)

Từ (1) và (2) => 3 điểm B, E, N thẳng hàng (đpcm).