Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC o
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: SỬa đề: So sánh góc AMB và góc AMC
ΔAMB=ΔAMC
=>góc AMB=góc AMC
a: Xét ΔABC có AB<AC
mà \(\widehat{ACB};\widehat{ABC}\) lần lượt là góc đối diện của cạnh AB,AC
nên \(\widehat{ACB}< \widehat{ABC}\)
b: Trên tia đối của tia MA, lấy D sao cho MA=MD
Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
=>AC=BD
Ta có: ΔMAC=ΔMDB
=>\(\widehat{MAC}=\widehat{MDB}\)
=>\(\widehat{MAC}=\widehat{ADB}\)(1)
Ta có: AC=BD
AC>AB
Do đó: BD>AB
Xét ΔBAD có BD>BA
mà góc BAD,góc BDA lần lượt là góc đối diện của các cạnh BD,BA
nên \(\widehat{BAD}>\widehat{ADB}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{MAB}>\widehat{MAC}\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
hay BC=13(cm)
b) Xét ΔMKC và ΔMAB có
MK=MA(gt)
\(\widehat{KMC}=\widehat{AMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔMKC=ΔMAB(c-g-c)
Trên tia AM lấy điểm K sao cho AM = KM
Xét hai tam giác \(\Delta AMC\)và \(\Delta KMB\), ta có :
AM = KM
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
CM = BM (vì M là trung điểm của BC)
Do đó : \(\Delta AMC=\Delta KMB\Rightarrow\widehat{CAM}=\widehat{BKM}\)
BK = AC > AB
Khi đó,trong \(\Delta ABK\)vì :
BK > AB => \(\widehat{BAK}>\widehat{BKA}\)=> \(\widehat{BAM}>\widehat{CAM}\).
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
c: góc FBC+góc C=90 độ
góc MAC+góc C=90 độ
=>góc FBC=góc MAC