K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2016

ta có :AC2=152=225(cm)

AB2+BC2=92+122=225(cm)

=>AC2=AB2+BC2=225(cm)

=>tg ABC vuông tại B(đ/l Py-ta-go đảo)

18 tháng 2 2016

Xét tam giác ABC có: AC^2=15^2=225(1)

AB^2+BC^2=12^2+9^2=225(2)

Từ (1);(2)=>AC^2=AB^2+BC^2(225=225)

Do đó tam giác ABC vuông(tại B)

18 tháng 2 2016

Theo đề :

AC = 15 => AC2 = 152 = 225 (cm)

AB = 12 => AB2 = 122 = 144 (cm)

BC = 9 => BC2 = 92 = 81 (cm)

=> AB2 + BC2 = 144 + 81 = 225 = AC2

=> Tam giác ABC vuông tại B (Theo đ/lí Pi-ta-go đảo).

4 tháng 7 2016

Hình đơn giản nên tự vẽ nhá.

a) Áp dụng định lý Py-ta-go vào tam giác vuông ABC:

AC^2 + AB^2 = BC^2
=> AC^2 = BC^2 - AB^2 = 15^2 - 9^2 = 225 - 81 = 144 

=> AC = căn 144 = 12 (cm)

b) Xét tam giác BIA và tam giác BIH:

BAI^ = BHI^ = 90o

IBA^ = IBH^ 

BI chung

=> tam giác BIA = tam giác BIH (cạnh huyền_góc nhọn)

=> BA = BH (2 cạnh tương ứng)

=> Tam giác AHB cân

4 tháng 7 2016

a.Ta có: AB=9cm ; BC=15cm

Theo định lý Py-ta-go: BC2 = AB2 +AC2

=>AC=BC2 - AB2 =152 - 92  = 225-81= 144

AC2 = 144 =>AC=\(\sqrt{144}\)=12cm

b.Ta có: IH vuông góc BC tại H => tam giác BIH vuông tại H

             Góc A vuông ( tam giác ABC vuông tại A ) => tsm giác ABI vuông tại A

 Xét tg BIH và tg ABI có:

  • góc ABI = góc HBI (BI là phân giác góc B)
  •  BI chung

=> BIH = ABI ( cạnh huyền - góc nhọn)

Do đó: AB = BH

mà đây là 2 cạnh bên của tam giác ABH => ABH cân tại H

C/m

Có AB = 9cm (gt)

     AC = 12cm (gt)

     BC = 15cm (gt)

=> BC là cạnh lớn nhất.

Có 52 = 225

Có 92 + 122 = 81 + 144 = 255

=> 92 + 122 = 152

=> AB2 + AC2 = BC2

=> \(\bigtriangleup\)ABC vuông tại A

b. Có phân giác góc B cắt góc B tại I

=> ID = IF (định lí) 

8 tháng 2 2021

Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)

                                        => AM là trung tuyến

Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)

                                      =>   AM là đường cao (TC các đường trong tam giác cân)

Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)

                              EM là đường cao (AM là đường cao, E thuộc AM)

=> Tam giác EBC cân tại E

M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Xét tam giác AMB vuông tại M (AM \(\perp BM\))

               AB= AM2 + BM2 (định lý Py ta go)

Thay số:  AB= 82 + 62

        <=> AB=  100

        <=> AB = 10 (cm)

Vậy AB = 10 (cm)

8 tháng 2 2021

Bài 1:

Xét ∆ABC vuông tại A, AH \(\perp\) BC:

Ta có: AH2 = BH . HC (hệ thức lượng)

<=>    122  = 9 . HC

<=>    HC   = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)

Vậy HC = 16 (cm)

Ta có: BC = BH + HC = 9 + 16 = 25 (cm)

Xét ∆ABC vuông tại A, AH \(\perp\) BC:

Ta có: AB2 = BH . BC (hệ thức lượng)

<=>    AB2 = 9 . 25

<=>    AB2 = 225

<=>    AB   = 15 (cm)

Vậy AB = 15 (cm)

13 tháng 3 2022

Xét tam giác ABC vuông tại B có:

\(AB^2+BC^2=AC^2\\ =>9^2+BC^2=15^2\\ =>BC^2=15^2-9^2=225-81=144\\ =>BC=12cm\)

13 tháng 3 2022

Xét tam giác ABC vuông tại B có:

AB2+BC2=AC2(Theo định lý Py-ta-go)

 92+ BC2= 152

   BC2   = 225-81

  BC2=  144

=>BC=12 cm

26 tháng 2 2020

a) Do 92+122=152 nên là tam giác vuông( định lý pytago)

b) Do B là trung điểm của đoạn AD nên AB và BD đối nhau. Suy ra AD vuông góc AC.

Lại thấy: B là trung điểm AD(gt) nên AD=2AB=18(cm)

Xét tan giác vuông ACD(cmt). Áp dụng định lí Pytago có:

AD2+AC2=DC2

<=>182+152=DC2

<=>324+225=DC2

<=>DC2=549(cm)

<=>DC=\(3\sqrt{61}\left(cm\right)\)

Vậy...

a: \(AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\)

b: Xét ΔABD vuông tại A và ΔABC vuông tại A có

AB chung

AD=AC

Do đó: ΔABD=ΔABC

c: Xét ΔBDC có 

BA là đường trung tuyến

DM là đường trung tuyến

BA cắt DM tại G

Do đó: G là trọng tâm

=>BG=2/3BA=6(cm)

6 tháng 4 2017

ta có  BC 2=AC2+AB2 ( vì 15 ^2 = 12^2+9^2)
=> tg ABC vuông tại A có BC là c huyền

6 tháng 4 2017

Xét tam giác ABC có:

\(AB^2+AC^2=81+144=225=15^2=BC^2\)

\(\Rightarrow\Delta ABC\)VUÔNG TẠI A

NHÉ

MIK KHÔNG CHẮC ĐÚNG KO