Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC có: AC^2=15^2=225(1)
AB^2+BC^2=12^2+9^2=225(2)
Từ (1);(2)=>AC^2=AB^2+BC^2(225=225)
Do đó tam giác ABC vuông(tại B)
Hình đơn giản nên tự vẽ nhá.
a) Áp dụng định lý Py-ta-go vào tam giác vuông ABC:
AC^2 + AB^2 = BC^2
=> AC^2 = BC^2 - AB^2 = 15^2 - 9^2 = 225 - 81 = 144
=> AC = căn 144 = 12 (cm)
b) Xét tam giác BIA và tam giác BIH:
BAI^ = BHI^ = 90o
IBA^ = IBH^
BI chung
=> tam giác BIA = tam giác BIH (cạnh huyền_góc nhọn)
=> BA = BH (2 cạnh tương ứng)
=> Tam giác AHB cân
a.Ta có: AB=9cm ; BC=15cm
Theo định lý Py-ta-go: BC2 = AB2 +AC2
=>AC2 =BC2 - AB2 =152 - 92 = 225-81= 144
AC2 = 144 =>AC=\(\sqrt{144}\)=12cm
b.Ta có: IH vuông góc BC tại H => tam giác BIH vuông tại H
Góc A vuông ( tam giác ABC vuông tại A ) => tsm giác ABI vuông tại A
Xét tg BIH và tg ABI có:
- góc ABI = góc HBI (BI là phân giác góc B)
- BI chung
=> BIH = ABI ( cạnh huyền - góc nhọn)
Do đó: AB = BH
mà đây là 2 cạnh bên của tam giác ABH => ABH cân tại H
C/m
Có AB = 9cm (gt)
AC = 12cm (gt)
BC = 15cm (gt)
=> BC là cạnh lớn nhất.
Có 52 = 225
Có 92 + 122 = 81 + 144 = 255
=> 92 + 122 = 152
=> AB2 + AC2 = BC2
=> \(\bigtriangleup\)ABC vuông tại A
b. Có phân giác góc B cắt góc B tại I
=> ID = IF (định lí)
Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)
=> AM là trung tuyến
Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)
=> AM là đường cao (TC các đường trong tam giác cân)
Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)
EM là đường cao (AM là đường cao, E thuộc AM)
=> Tam giác EBC cân tại E
M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Xét tam giác AMB vuông tại M (AM \(\perp BM\))
AB2 = AM2 + BM2 (định lý Py ta go)
Thay số: AB2 = 82 + 62
<=> AB2 = 100
<=> AB = 10 (cm)
Vậy AB = 10 (cm)
Bài 1:
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AH2 = BH . HC (hệ thức lượng)
<=> 122 = 9 . HC
<=> HC = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)
Vậy HC = 16 (cm)
Ta có: BC = BH + HC = 9 + 16 = 25 (cm)
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AB2 = BH . BC (hệ thức lượng)
<=> AB2 = 9 . 25
<=> AB2 = 225
<=> AB = 15 (cm)
Vậy AB = 15 (cm)
Xét tam giác ABC vuông tại B có:
\(AB^2+BC^2=AC^2\\ =>9^2+BC^2=15^2\\ =>BC^2=15^2-9^2=225-81=144\\ =>BC=12cm\)
Xét tam giác ABC vuông tại B có:
AB2+BC2=AC2(Theo định lý Py-ta-go)
92+ BC2= 152
BC2 = 225-81
BC2= 144
=>BC=12 cm
a) Do 92+122=152 nên là tam giác vuông( định lý pytago)
b) Do B là trung điểm của đoạn AD nên AB và BD đối nhau. Suy ra AD vuông góc AC.
Lại thấy: B là trung điểm AD(gt) nên AD=2AB=18(cm)
Xét tan giác vuông ACD(cmt). Áp dụng định lí Pytago có:
AD2+AC2=DC2
<=>182+152=DC2
<=>324+225=DC2
<=>DC2=549(cm)
<=>DC=\(3\sqrt{61}\left(cm\right)\)
Vậy...
a: \(AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\)
b: Xét ΔABD vuông tại A và ΔABC vuông tại A có
AB chung
AD=AC
Do đó: ΔABD=ΔABC
c: Xét ΔBDC có
BA là đường trung tuyến
DM là đường trung tuyến
BA cắt DM tại G
Do đó: G là trọng tâm
=>BG=2/3BA=6(cm)
ta có BC 2=AC2+AB2 ( vì 15 ^2 = 12^2+9^2)
=> tg ABC vuông tại A có BC là c huyền
Xét tam giác ABC có:
\(AB^2+AC^2=81+144=225=15^2=BC^2\)
\(\Rightarrow\Delta ABC\)VUÔNG TẠI A
NHÉ
MIK KHÔNG CHẮC ĐÚNG KO
ta có :AC2=152=225(cm)
AB2+BC2=92+122=225(cm)
=>AC2=AB2+BC2=225(cm)
=>tg ABC vuông tại B(đ/l Py-ta-go đảo)