K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: Xét tứ giác ABEC có

D là trung điểm chung của AE và BC

=>ABEC là hình bình hành

mà góc BAC=90 độ

nên ABEC là hình chữ nhật

=>CE//AB

25 tháng 4 2016

A B C D E F O

a. Áp dụng định lý Pitago cho tam giác vuông ABC ta có: \(AC^2=BC^2-AC^2=10^2-6^2=64\)

Vậy \(AC=8cm\)

b. Do D nằm trên tia đối của tia AB nên \(\widehat{CAD}=90^O\) 

Xét tam giác ABC và tam giác ADC có:

\(\widehat{CAB} = \widehat{CAD}=90^O\)

AC chung

AB=AD(giả thiết)

\(\Rightarrow\Delta ABC=\Delta ADC\)(Hai cạnh góc vuông)

c. Xét tam giác DCB có :

A là trung điểm BD,

AE song song BC 

\(\Rightarrow\) AE là đường trung bình tam giác DBC., hay E là trung điểm DC. Vậy AE là đường trung tuyến ứng với cạnh huyền của tam giác vuông nên EA=EC=ED. Vậy tma giác AEC cân tại E. ( Còn có thể có cách khác :) ) 

d. Xét tam giác DBC có CA là trung tuyến, lại có CA = 3OA nên O là trọng tâm tam giác DBC. Do F là trung điểm BC nên DF là đường trung tuyến. Vậy O  nằm trên DF hay O, D, F thẳng hàng.

Chúc em học tốt ^^

25 tháng 4 2016

a) 

Theo định lí py ta go trong tam giác  vuông ABC  có :

BC= AB+ AC

Suy ra : AC= BC- AB

AC2 =10- 6

AC = căn bậc 2 của 36 = 6 (cm )

b)

Xét tam giác ABC  và tam giác  ADC  có :

AC  cạnh chung

Góc A1 = góc A2  = 90 độ (gt )

AB = AD ( gt )

suy ra : tam giác ABC = tam giác ADC (  c- g -c )

15 tháng 12 2016

A B C M D

a) Xét ΔABD và ΔMCD có:

AD=MD(gt)

\(\widehat{ADB}=\widehat{CDM}\left(đđ\right)\)

BD=CD(gt)

=> ΔABD=ΔMCD(c.g.c)

b) Đính chính lại đề: CM AB vuông góc vs CM

VÌ: ΔABD=ΔMCD(cmt)

=> \(\widehat{ABD}=\widehat{MCD}\) . Mà hai góc này ở vị trí sole trong

=>AB//CM

c)Xét ΔBDM và ΔCDA có:

DB=DC(gt)

\(\widehat{BDM}=\widehat{CDA}\left(đđ\right)\)

DM=AD(gt)

=>ΔBDM=ΔCDA(c.g.c)

=>\(\widehat{BMD}=\widehat{CAD}\). Mà hai góc này ở vị trí sole trong

=>AC//BM

16 tháng 12 2016

đọc nhầm đề lm lại từ phần b

b) Vì: ΔABD=ΔMCD(cmt)

=> \(\widehat{ABD}=\widehat{MCD}\) .Mà hai góc này ở vị trid sole trong

=> AB//CM

Mà: \(AB\perp AC\left(gt\right)\)

=> \(AC\perp CM\)

phần c vẫn như ở dưới

8 tháng 4 2018

A B C D E F

a, Áp dụng định lí Pytago cho ∆ABC ta có:

AB2 + AC2 = BC2 

=> AB2 + 82 = 102

=> AB2 = 100 - 64 = 36

=> AB = 6 cm

Vì AB = AD mà A nằm giữa B và D (cách vẽ) => BD = 2AB = 12cm

b, Xét ∆ABC và ∆ADC, ta có:

- AB = AD (gt)

- góc DAC = góc BAC = 90o

- CA là cạnh chung (gt)

=> ∆ABC = ∆ADC (c-g-c)

c, Xét ∆ECD và ∆EBF, ta có:

- góc FBE = góc DCE [so le trong] 

- EB = EC (E là trung điểm BC) 

- góc CED = góc BEF (đối đỉnh) 

=> ∆ECD = ∆EBF (g-c-g)

=> DE = EF

d,

Vì ∆ECD = ∆EBF => CD = BF

Mà DB + BF > DF (bất đẳng thức tam giác) 

\(\Rightarrow\frac{DB+BF}{2}>\frac{DF}{2}=DE\)

\(\Leftrightarrow\frac{DB+DC}{2}>DE\)

8 tháng 4 2018

Cám ơn bạn nha

16 tháng 2 2022

a) Xét tam giác ABD và tam giác ACD:

AD chung.

AB = AC (gt).

BD = CD (D là trung điểm của BC).

\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)

b) Xét tam giác ABC: AB = AC (gt).

\(\Rightarrow\Delta ABC\) cân tại A.

Mà AD là trung tuyến (D là trung điểm của BC).

\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).

Xét tam giác MAD và tam giác NAD:

AD chung.

AM = AN (gt).

\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).

\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)

\(\Rightarrow\) DM = DN (2 cạnh tương ứng).

c) Xét tam giác ADC và tam giác EDB:

DC = DB (D là trung điểm của BC).

AD = ED (gt).

\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).

\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)

\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).

\(\Rightarrow\) AC // BE.

Mà \(DK\perp BE\left(gt\right).\)

\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)

Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)

Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)

\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)

Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.

Bài 1:Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EMa) Chứng minh ( CM ) : tam giác ABM = tam giác ACMb) CM : AM vuông góc BCc) CM : tam giác AEH = tam giác CEMd) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm...
Đọc tiếp

Bài 1:

Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EM

a) Chứng minh ( CM ) : tam giác ABM = tam giác ACM

b) CM : AM vuông góc BC

c) CM : tam giác AEH = tam giác CEM

d) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm H, A, K thẳng hàng

 

Bài 2:

Cho tam giác ABC có góc B < 90 độ. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Bx khác BC, trên tia Bx lấy điểm D sao cho BD = BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA, trên tia By lấy E sao cho BE = BA

a) CMR : DA = EC

b) DA vuông góc EC

 

Bài 3:

Cho tam giác ABC vuông tại B và AC = 2AB. Kẻ phân giác AE ( E thuộc BC ) của góc A

a) CM : EA = EC

b) Tính góc A và góc C của tam giác ABC

 

GIÚP TỚ VỚI Ạ. TỚ ĐANG CẦN!!

4
6 tháng 1 2018

Bài 1:

K D A H E B M C

a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A

=> đường trung tuyến AM đồng thời là đường cao

Vậy AM vuông góc BC

c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)

\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)

d) Ta có KB//AM(vì vuông góc với BM 

\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)

Xét tam giác KDB và MDA (2 góc đối đỉnh)

\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)

\(\Rightarrow KD=DM\left(1\right)\)

Tam giác ABM vuông tại M có trung tuyến MD 

Nên : MD=BD=AD(2)

Từ (1) và (2) ta có : KD=DM=DB=AD

Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)

Nên : Tam giác KAM vuông tại A

Tương tự : Tam giác MAH vuông tại A

Ta có: Qua1 điểm A thuộc AM  có 2 đường KA và AH cùng vuông góc với AM 

Nên : K,A,H thẳng thàng

6 tháng 1 2018

Bài 2 : 

x D A B C E y

a) Ta có tam giác DAB=tam giác CEB(c.g.c)

Do : DA=CB(gt)

       BE=BA(gt)

       \(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))

=> DA=EC

b) Do tam giác DAB=tam giác CEB(ở câu a) 

=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)

Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC) 

=> \(\widehat{BCE}+\widehat{BCD}=90^0\)

=> DA vuông góc với EC

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//EC và AB=EC

c: Xét ΔBCD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔBCD cân tại C

d: Xét ΔOBC có

OM là đường cao

OM là đường trung tuyến

Do đó: ΔOBC cân tại O

Suy ra: OB=OC(1)

Xét ΔOBD có
OA là đường cao

OA là đường trung tuyến

Do đó: ΔOBD cân tại O

Suy ra: OB=OD(2)

Từ (1) và (2) suy ra OB=OC=OD

hay O cách đều ba đỉnh của ΔBDC