Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Ta có: AB = AC `=>` Tam giác ABC cân
Xét tam giác ABD và tam giác ACD, có:
AB = AC ( gt )
BD = CD ( gt )
AD: cạnh chung
Vậy tam giác ABD = tam giác ACD ( c.c.c )
Xét tam giác ABC có AB = AC `=>` Tam giác ABC cân
Mà AD là đường trung tuyến `=>` AD cũng là đường cao
`=>` AD vuông góc BC
2. Xét tam giác ADC và tam giác EDB, có:
BD = CD ( gt)
\(\widehat{BDE}=\widehat{ADC}\) ( đối đỉnh )
AD = ED ( gt )
Vậy tam giác ADC = tam giác EDB ( c.g.c )
`=>` \(\widehat{DAC}=\widehat{DEB}\)
`=>` AC // BE ( so le trong )
3. Xét tam giác AMD và tam giác AND, có:
AM = AN ( gt )
\(\widehat{MAD}=\widehat{NAD}\) (tam giác ABC cân, AD là đường cao cũng là phân giác )
AD: chung
Vậy tam giác AMD = tam giác AND ( c.g.c )
\(\Rightarrow\widehat{AMD}=\widehat{AND}=90^o\)
\(\Rightarrow DN\perp AC\) (1)
Ta có: \(DK\perp BE\) ( gt ) (2)
mà BE // AC (3)
(1);(2);(3) `=>` N,D,K thẳng hàng
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a) Xét tam giác ABD và tam giác ACD:
AD chung.
AB = AC (gt).
BD = CD (D là trung điểm của BC).
\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)
b) Xét tam giác ABC: AB = AC (gt).
\(\Rightarrow\Delta ABC\) cân tại A.
Mà AD là trung tuyến (D là trung điểm của BC).
\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).
Xét tam giác MAD và tam giác NAD:
AD chung.
AM = AN (gt).
\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).
\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)
\(\Rightarrow\) DM = DN (2 cạnh tương ứng).
c) Xét tam giác ADC và tam giác EDB:
DC = DB (D là trung điểm của BC).
AD = ED (gt).
\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).
\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)
\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).
\(\Rightarrow\) AC // BE.
Mà \(DK\perp BE\left(gt\right).\)
\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)
Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)
Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)
\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)
Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.