Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha
a ) Vì AB = 3 ( gt ) => AB2 = 9
AC = 4 ( gt ) => AC2 = 16
BC = 5 ( gt ) => BC2 = 25
MÀ 25 = 9 + 16
DO đó BC2 = AB2 + AC2
=> \(\Delta\)ABC vuông tại A ( định lí đảo định lí py ta go )
Vậy \(\Delta\)ABC vuông tại A
b ) Vì \(\Delta\)ABC vuông tại A ( CM a ) => BAC = 90o hay BAD = 90o
Vì DE \(\perp\)BC ( gt ) => BED = DEC = 90o ( định nghĩa 2 đường thẳng vuông góc )
Vì BD là tia phân giác của góc B ( gt ) => ABD = EBD
Xét \(\Delta\)ABD và \(\Delta\)EBD có :
ABD = EBD ( cmt )
BD chung
BAD = BED ( = 90o )
DO đó \(\Delta\)ABD = \(\Delta\)EBD ( cạnh huyền - góc nhọn )
=> DA = DE ( 2 cạnh tương ứng )
Vậy ..
a. Theo định lí Pitago:
Ta có: AB2 + AC2 = BC2
42 + AC2 = 52
16 + AC2 = 25
AC2 = 25 - 16
AC2 = 9
AC2 = 33
=> AC = 3 (cm)
a) Ta có: \(BC^2=AB^2+AC^2\) (do \(5^2=4^2+3^2\) )
\(\Rightarrow\Delta ABC\) vuông tại A
b) Xét 2 tam giác vuông BDA và BDE, có:
Góc ABD = góc EBD (phân giác BD của góc B)
BD là cạnh chung
\(\Rightarrow\) \(\Delta\) vuông BDA = \(\Delta\) vuông BDE(cạnh huyền - góc nhọn)
\(\Rightarrow\) DA = DE(2 cạnh tương ứng)
c) Xét 2 tam giác vuông ADF và EDC, ta có:
DA = DE (chứng minh a)
góc ADF = góc EDC (đối đỉnh)
\(\Rightarrow\Delta\) vuông ADF = \(\Delta\) vuông EDC (cạnh góc vuông - góc nhọn)
Ta có: \(\Delta\)ADF là tam giác vuông tại A
\(\Rightarrow\) DF là cạnh huyền của tam giác ADF
\(\Rightarrow\) DF > DA
Mà DE = DA (\(\Delta ADF=\Delta EDC\) )
nên DF > DE