Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
Trả lời
em làm được những phần nào rồi
còn phần nào để ah chỉ cho
Em tham khảo nha
Chắc em chưa học hbh
Giải :
a) Ta có: góc FAB + góc BAC = 90 độ
góc EAC + góc BAC = 90 độ
=> Góc FAB = góc EAC
AF=AC; AB=AE
=> Tam giác AFB = tam giác ACE
=> FB=EC
b) Lấy K sao cho M là trung điểm của AK thì ta có ACKB là hình bình hành nên góc ACB =180* - góc BAC. Ta cũng tính dc góc FAE= 180* - góc BAC ( tổng của BAC với 2 lần góc CAE, mà góc CAE=90* -góc BAC). Thêm với AC=AF , CK=AE (=AB) nên tam giác ACK = tam giác FAE nên AK=EF mà AK=2AM nên EF=2AM
c) Gọi H là giao của AM và EF. Tam giác ACK = tam giác FAE nên góc CAK = góc AFE, mà góc CAK phụ với góc MAF nên góc AFE cũng phụ góc MAF. Xét trong tam giác AHF có góc F và góc A phụ nhau nên tam giác AHF vuông tại H suy ra AM vuông góc với EF.
a: \(\widehat{C}=90^0-30^0=60^0\)
c: Xét ΔCAD và ΔCMD có
CA=CM
\(\widehat{ACD}=\widehat{MCD}\)
CD chung
Do đó: ΔCAD=ΔCMD
a,b)
c) Vì CD là tia phân giác của \(\widehat{C}\) nên \(\widehat{ACD}=\widehat{MCD}=\frac{60}{2}=30\)*
Xét ΔACD và ΔMCD, ta có:
CA=CM (gt)
\(\widehat{ACD}=\widehat{MCD}=30\)* (cmt)
Chung cạnh CD
Do đó: ΔACD = ΔMCD (c.g.c)
d) Mk sửa lại đề là cắt xy tại K bạn nhé !!!
Vì AK || DC nên \(\widehat{ACD}=\widehat{CAK}=30\)* (So le trong)
Xét ΔDAC va ΔKCA, ta có:
\(\widehat{ACD}=\widehat{CAK}=30\)* (cmt)
Chung cạnh AC
\(\widehat{DAC}=\widehat{KCA}=90\)*
Do đó: ΔDAC = ΔKCA (g.c.g)
=> AK=CD (2 cạnh tương ứng).
e) Trong ΔAKC có: \(\widehat{CAK}+\widehat{AKC}+\widehat{KCA}=180\)*
\(\Rightarrow\widehat{AKC}=180-\left(\widehat{CAK}+\widehat{KCA}\right)\)
\(\Rightarrow\widehat{AKC}=180-\left(30+90\right)\)
\(\Rightarrow\widehat{AKC}=60\)*