Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABC có: \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180\)
Mà \(\widehat{BAC}=60\)
Suy ra \(\widehat{ABC}+\widehat{ACB}=180-60=120\)
Vì BD, CE lần lượt là phân giác \(\widehat{ABC}\)và \(\widehat{ACB}\)
Nên \(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}\)=\(\frac{120}{2}=60\)
Tam giác BIC có \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180\)
Suy ra 60 + \(\widehat{BIC}\)=180
Suy ra \(\widehat{BIC}\)= 180-60=120
Do BD là tia phân giác \(\widehat{B} \)
=> \(\widehat{B} = \widehat{EBD} + \widehat{DBC}\)
=> \(\widehat{EBD} = \widehat{DBC}\) ( hai góc tương ứng )
Do CE là tia phân giác \(\widehat{C}\)
=> \(\widehat{C} = \widehat{DCE} + \widehat{ECB}\)
=> \(\widehat{DCE} = \widehat{ECB}\) ( hai góc tương ứng)
Vì \(\widehat{B} = \widehat{C} \) ( theo giả thiết)
=> \(\widehat{DBC} = \widehat{ECB}\)
Xét Δ BEC và Δ CDB có
BC là cạnh chung
\(\widehat{B} = \widehat{C}\) ( gt )
\(\widehat{DBC} = \widehat{ECB}\) ( cm trên )
=> Δ BEC = Δ CDB ( trường hợp g-c-g )
=> BD = CE hai cạnh tương ứng
mk lm đại th chắc sai r nhưng nếu đúng tick cho mk nha!!!
Có AD là tia phân giác góc BAC => Góc BAD = góc BAC/2=70/2=35 độ
có BE // AD => góc BAD= góc ABE = 35 độ ( so le trong )
Có góc BAC + góc BAE = 180 độ ( kề bù )
=> góc BAE = 180 độ - góc BAC = 180 - 70 = 110 độ
Có BAE + ABE + AEB = 180 độ ( tổng 3 góc tam giác AEB )
=> AEB = 180 - BAE - ABE = 180 -110-35=35 độ
bạn tự vẽ hình nhé :)
Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=> B+C=180-60=120
=> 1/2B+1/2C=1/2.120=60
=> IBC+ICB=60
Ta lại có:
\(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^0\)
=> BIC=120
Vậy BIC=120
( bạn nhớ thêm các kí hiệu nhé )
Tự vẽ hình nha:
a) Theo định lý tổng 3 góc trong 1 \(\Delta\)ta có
\(\Delta\)ABC có :\(\widehat{CAB}+\widehat{ABC}+\widehat{ACB}\)= 1800
hay 60* + \(\widehat{ABC}+\widehat{ACB}\)=1800
\(\Rightarrow\)\(\widehat{ABC}+\widehat{ACB}\)=1800 - 600 =1200
Vì CE và BD là tia phân giác của \(\widehat{ABC}\)và \(\widehat{ACB}\)
\(\Rightarrow\)\(\widehat{DBC}+\widehat{ECB}\)= \(\frac{120^0}{2}\)=600
Theo định lý tổng 3 góc trong 1 \(\Delta\)ta có
\(\Delta CIB\)có : \(\widehat{ICB}+\widehat{IBC}+\widehat{BIC}\)=1800
hay 600 + \(\widehat{BIC}\)=1800
\(\Rightarrow\)\(\widehat{BIC}\)=1800 - 600 = 1200
a: góc ABC=180-70-30=80 độ
góc BAD=80/2=40 độ
góc ADB=180-40-70=70 độ
b: góc IBC+góc ICB=1/2(30+80)=55 độ
=>góc BIC=125 độ
=>góc CID=55 độ