K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

\(\overrightarrow{AH}=\left(x_H-1;y_H-2\right)\)

\(\overrightarrow{BC}=\left(11;2\right)\)

\(\overrightarrow{BH}=\left(x_H+2;y_H-6\right)\)

Theo đề, ta có:

\(\left\{{}\begin{matrix}11x_H-11+2y_H-4=0\\2x_H+4-11y_H+66=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}22x_H+4y_H=30\\22x_H-121y_H=-770\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}125y_H=800\\11x_H+2y_H=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y_H=\dfrac{32}{5}\\x_H=\dfrac{1}{5}\end{matrix}\right.\)

28 tháng 12 2021

cái khúc từ đề bài ta có xuống í, làm sao bạn ra được cái hệ phương trình đó vậy ạ? 

10 tháng 12 2022

a: \(AB=\sqrt{\left(-2-1\right)^2+\left(6-2\right)^2}=5\)

\(AC=\sqrt{\left(9-1\right)^2+\left(8-2\right)^2}=10\)

\(BC=\sqrt{\left(9+2\right)^2+\left(8-6\right)^2}=5\sqrt{5}\)

Vì AB^2+AC^2=BC^2

nên ΔABC vuông tại A

b: \(cosB=\dfrac{AC}{BC}=\dfrac{10}{5\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)

c: Hình chiếu của A trên AB là A

c: \(S_{ABC}=\dfrac{1}{2}\cdot5\cdot10=25\)

NV
9 tháng 7 2021

Gọi E là trung điểm AC, do H và K cùng nhìn AC dưới 1 góc vuông nên H, K thuộc đường tròn đường kính AC (1)

\(\Rightarrow EH=EK\) hay E nằm trên trung trực HK

Gọi F là trung điểm HK \(\Rightarrow F\left(2;-1\right)\)

\(\overrightarrow{HK}=\left(14;-8\right)=2\left(7;-4\right)\Rightarrow\) EF nhận (7;-4) là 1 vtpt

Phương trình EF: \(7\left(x-2\right)-4\left(y+1\right)=0\Leftrightarrow7x-4y-18=0\)

 Tọa độ E là nghiệm: \(\left\{{}\begin{matrix}x-y+10=0\\7x-4y-18=0\end{matrix}\right.\) \(\Rightarrow E\left(\dfrac{58}{3};\dfrac{88}{3}\right)\)

\(\widehat{ACH}=\widehat{HAK}\) (cùng phụ \(\widehat{ABC}\)\(\Rightarrow AH=HK\) 

Mà \(AE=EK\) theo (1) \(\Rightarrow AK\) là trung trực EH

\(\overrightarrow{HE}=\left(\dfrac{73}{3};\dfrac{103}{3}\right)=\dfrac{1}{3}\left(73,103\right)\) \(\Rightarrow AK\) nhận \(\left(103;-73\right)\) là 1 vtpt

Tới đây bạn hãy kiểm tra lại số liệu, số liệu quá bất hợp lý

Tính tiếp như sau:

Viết pt AK (biết đi qua K và có vtpt như trên)

Tìm tọa độ giao điểm P của EH và AK

Khi đó P là trung điểm AK, tìm tọa độ A dễ dàng bằng công thức trung điểm

NV
9 tháng 7 2021

undefined

a: N thuộc Ox nên N(x;0)

\(NA=\sqrt{\left(1-x\right)^2+\left(2-0\right)^2}=\sqrt{\left(x-1\right)^2+4}\)

\(NC=\sqrt{\left(9-x\right)^2+\left(8-0\right)^2}=\sqrt{\left(x-9\right)^2+64}\)

Để NA=NC thì (x-9)^2+64=(x-1)^2+4

=>x^2-18x+81+64-x^2+2x-1-4=0

=>-16x+140=0

=>x=8,75

b: K thuộc Ox nên K(x;0)

\(\overrightarrow{AO}=\left(1;2\right)\)

\(\overrightarrow{BK}=\left(x+2;-6\right)\)

Để AOKB là hình thang có hai đáy là AO và KB thì \(\dfrac{x+2}{1}=\dfrac{-6}{2}=-3\)

=>x+2=-3

=>x=-5

NV
7 tháng 1 2021

Đặt \(\overrightarrow{PB}=x\overrightarrow{BC}\)

\(\overrightarrow{PM}=\overrightarrow{PB}+\overrightarrow{BM}=x.\overrightarrow{BC}-\dfrac{1}{3}\overrightarrow{AB}\)

\(\overrightarrow{PN}=\overrightarrow{PC}+\overrightarrow{CN}=\left(x+1\right)\overrightarrow{BC}-\dfrac{1}{2}\overrightarrow{AC}=\left(x+1\right)\overrightarrow{BC}-\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BC}\right)\)

\(=\left(x+\dfrac{1}{2}\right)\overrightarrow{BC}-\dfrac{1}{2}\overrightarrow{AB}\)

P, M, N thẳng hàng \(\Rightarrow\dfrac{x+\dfrac{1}{2}}{x}=\dfrac{\dfrac{1}{2}}{\dfrac{1}{3}}\Rightarrow x=1\) \(\Rightarrow\overrightarrow{PB}=\overrightarrow{BC}\)

\(\Rightarrow\) B là trung điểm PC \(\Rightarrow P\left(-6;5\right)\)

Nếu bạn chưa học bài pt đường thẳng thì làm cách trên, còn học rồi thì đơn giản là thiết lập 2 pt đường thẳng BC và MN là xong