Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2=b^2+c^2-2bc.\cos A\Rightarrow a=\sqrt{b^2+c^2-2bc.cosA}=\sqrt{7^2+5^2-\dfrac{2.7.5.3}{5}}=4\sqrt{2}\)
\(\sin A=\sqrt{1-cos^2A}=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)
\(p=\dfrac{a+b+c}{2}=6+2\sqrt{2}\)
\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=14\)
\(R=\dfrac{a}{2.sinA}=\dfrac{4\sqrt{2}}{\dfrac{2.4}{5}}=\dfrac{5\sqrt{2}}{2}\)
\(r=\dfrac{S}{p}=\dfrac{14}{6+2\sqrt{2}}=3-\sqrt{2}\)
\(ha=\dfrac{2S}{a}=\dfrac{2.14}{4\sqrt{2}}=2\sqrt{2}\)
\(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\)
\(\Leftrightarrow7^2+5^2-a^2=\dfrac{3}{5}\cdot2\cdot7\cdot5=3\cdot2\cdot7=42\)
\(\Leftrightarrow a^2=32\)
hay \(a=4\sqrt{2}\)
\(\sin A=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)
Áp dụng định lí cosin trong tam giác ABC ta có:
\(B{C^2} = A{C^2} + A{B^2} - 2.AC.AB.\cos A\)
\( \Rightarrow \cos A = \frac{{A{C^2} + A{B^2} - B{C^2}}}{{2.AB.AC}} = \frac{{{7^2} + {6^2} - {8^2}}}{{2.7.6}} = \frac{1}{4}\)
Lại có: \({\sin ^2}A + {\cos ^2}A = 1 \Rightarrow \sin A = \sqrt {1 - {{\cos }^2}A} \)(do \({0^o} < A \le {90^o}\))
\( \Rightarrow \sin A = \sqrt {1 - {{\left( {\frac{1}{4}} \right)}^2}} = \frac{{\sqrt {15} }}{4}\)
Áp dụng định lí sin trong tam giác ABC ta có:\(\frac{{BC}}{{\sin A}} = 2R\)
\( \Rightarrow R = \frac{{BC}}{{2.\sin A}} = \frac{8}{{2.\frac{{\sqrt {15} }}{4}}} = \frac{{16\sqrt {15} }}{{15}}.\)
Vậy \(\cos A = \frac{1}{4};\)\(\sin A = \frac{{\sqrt {15} }}{4};\)\(R = \frac{{16\sqrt {15} }}{{15}}.\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot BA\cdot BC\cdot sinABC\)
\(=\dfrac{1}{2}\cdot5\cdot7\cdot sin120=\dfrac{35\sqrt{3}}{4}\)
Xét ΔABC có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)
=>\(\dfrac{5^2+7^2-AC^2}{2\cdot5\cdot7}=cos120=\dfrac{-1}{2}\)
=>\(25+49-AC^2=-35\)
=>\(AC^2=25+49+35=109\)
=>\(AC=\sqrt{109}\)
Kẻ AH\(\perp\)BC
=>\(h_A=AH\)
\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\)
=>\(\dfrac{1}{2}\cdot AH\cdot7=\dfrac{35\sqrt{3}}{4}\)
=>\(AH\cdot3,5=\dfrac{35\sqrt{3}}{4}\)
=>\(AH=\dfrac{10\sqrt{3}}{4}=\dfrac{5}{2}\sqrt{3}\)
Xét ΔABC có \(\dfrac{AC}{sinB}=2R\)
=>\(2R=\dfrac{\sqrt{109}}{sin120}=\sqrt{109}\cdot\dfrac{2}{\sqrt{3}}\)
=>\(R=\sqrt{\dfrac{109}{3}}=\dfrac{\sqrt{327}}{3}\)
Từ định lí cosin ta suy ra \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{5^2} + {8^2} - {6^2}}}{{2.5.8}} = \frac{{53}}{{80}}\)
Tam giác ABC có nửa chu vi là:\(p = \frac{{a + b + c}}{2} = \frac{{6 + 5 + 8}}{2} = 9,5.\)
Theo công thức Herong ta có: \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {9,5.\left( {9,5 - 6} \right).\left( {9,5 - 5} \right).\left( {9,5 - 8} \right)} \approx 14,98\)
Lại có: \(S = pr \Rightarrow r = \frac{S}{p} = \frac{{14,98}}{{9,5}} = 1,577.\)
Vậy \(\cos A = \frac{{53}}{{80}}\); \(S \approx 14,98\) và \(r = 1,577.\)