K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

bạn có viết sai pt nào k vậy?

11 tháng 8 2016

bài toán này nghĩ mãi không ra, mình làm theo cách dời hình của lớp 11 nên không thấy hợp lý lắm.
bản thân \(x_B,x_A\)khá lẻ. Để tí nữa mình sửa lại cho chẵn để dẽ tính hơn.

NV
7 tháng 2 2021

1.

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\2x-3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-3\end{matrix}\right.\)

\(\Rightarrow A\left(-5;-3\right)\)

Phương trình BC qua B và vuông góc đường cao kẻ từ A có dạng:

\(1\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow x+y-3=0\)

Gọi M là trung điểm BC thì tọa độ M thỏa mãn:

\(\left\{{}\begin{matrix}2x-3y+1=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{8}{5};\dfrac{7}{5}\right)\)

M là trung điểm BC \(\Rightarrow C\left(\dfrac{6}{5};\dfrac{9}{5}\right)\)

2.

Do C thuộc AC nên tọa độ có dạng: \(C\left(c;2c+3\right)\)

Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{c+4}{2};\dfrac{2c+5}{2}\right)\)

M thuộc trung tuyến kẻ từ A nên:

\(\dfrac{c+4}{2}+\dfrac{2c+5}{2}-1=0\Leftrightarrow c=-\dfrac{7}{3}\)

\(\Rightarrow C\left(-\dfrac{7}{3};-\dfrac{5}{3}\right)\)

Phần 1: Đại sốCâu 1 (2đ): Xét dấu các biểu thức sau:a.f x x     3 4; c.    2f x x x x     1 2 5 2 .b. 2f x x x    9 6 1; d.  22 52xf xx x.Câu 2 (4đ): Giải các bất phương trình sau:a.  23 4 4 0 x x   ; c.  21 2 503x xx .b. 22 4 4 0 x x x   ; d. 225 2 302x xx x.Câu 3 (1đ): Xác định miền nghiệm của bất phương...
Đọc tiếp

Phần 1: Đại số
Câu 1 (2đ): Xét dấu các biểu thức sau:
a.
f x x     3 4

; c.

    

2

f x x x x     1 2 5 2 .

b.
 
2
f x x x    9 6 1

; d.

  2
2 5
2
x

f x
x x



.

Câu 2 (4đ): Giải các bất phương trình sau:
a.
  
2
3 4 4 0 x x   

; c.

  
2
1 2 5
0

3
x x
x
 

.

b.
 
2
2 4 4 0 x x x   

; d.

 
2
2
5 2 3
0
2
x x
x x


.

Câu 3 (1đ): Xác định miền nghiệm của bất phương trình sau:

2 3 1 0. x y   

Phần 2: Hình học
Câu 1 (2đ): Cho tam giác ABC biết

A B và C 1; 4 , 3; 1 6; 2 .       
a) Lập phương trình tham số đường thẳng chứa cạnh BC của tam giác.
b) Lập phương trình tổng quát đường cao hạ từ A của tam giác ABC.
c) Lập phương trình tổng quát đường thẳng đi qua B và song song với đường thẳng
d x y : 3 1 0.   
Câu 2 (1đ): Xét vị trí tương đối và tìm giao điểm (nếu có) của 2 đường thẳng sau:
1
d : 2 3 0     x y

2
d : 2 3 0.

0
HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b = 2,c =  - 20\)

Ta có \({a^2} + {b^2} - c = 1 + 4 + 20 = 25 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1;2)\) và có bán kính \(R = \sqrt {25}  = 5\)

b) Phương trình \({\left( {x + 5} \right)^2} + {\left( {y + 1} \right)^2} = 121\) là phương trình dường tròn với tâm \(I( - 5; - 1)\) và bán kinh \(R = \sqrt {121}  = 11\)

c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a =  - 3,b =  - 2,c =  - 2\)

Ta có \({a^2} + {b^2} - c = 9 + 4 + 2 = 15 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I( - 3; - 2)\) và có bán kính \(R = \sqrt {15} \)

d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Do \({1^2} + {\left( { - 1} \right)^2} >  - 7\) nên \({x^2} + {y^2} - 2x + 2y - 7 = 0\) là phương trình đường tròn

b) Vì \({4^2} + {\left( { - 1} \right)^2} < 20\) nên \({x^2} + {y^2} - 8x + 2y + 20 = 0\)không là phương trình đường tròn

9 tháng 4 2021

1.

A có tọa độ là nghiệm hệ: \(\left\{{}\begin{matrix}x-y-2=0\\7x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\Rightarrow A=\left(-1;-3\right)\)

Phương trình đường thẳng AB: \(\dfrac{x+1}{-5}=\dfrac{y+3}{7}\Leftrightarrow7x-5y+22=0\)

Đường thẳng BC đi qua B và vuông góc với AH có phương trình: \(x+7y-22=0\)

 

26 tháng 4 2020

ai biêt

21 tháng 3 2021

undefined

NV
11 tháng 3 2023

A là giao điểm AB và AC nên tọa độ là nghiệm:

\(\left\{{}\begin{matrix}2x+y-4=0\\x-y+1=0\end{matrix}\right.\) \(\Rightarrow A\left(1;2\right)\)

Do B thuộc AB nên tọa độ có dạng: \(B\left(b;4-2b\right)\)

Do C thuộc AC nên tọa độ có dạng: \(C\left(c;c+1\right)\)

Áp dụng công thức trọng tâm:

\(\left\{{}\begin{matrix}1+b+c=3.2\\2+4-2b+c+1=3.1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b+c=5\\-2b+c=-4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}b=3\\c=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}B\left(3;-2\right)\\C\left(2;3\right)\\\end{matrix}\right.\)