K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc AID=góc BIH=90 độ-góc CBI

góc ADI=90 độ-góc ABD

mà góc ABD=góc CBI

nên góc AID=góc ADI

=>ΔADI cân tại A
b: Xét ΔBAD vuông tại A và ΔBKD vuông tại K có

BD chung

góc ABD=góc KBD

Do đo: ΔBAD=ΔBKD

=>DA=DK=AI

Xét tứ giác AIKD có

AI//DK

AI=DK

AI=AD

Do đo; AIKD là hình thoi

22 tháng 9 2017

Hình tam giác t1: Polygon A, B, C Đoạn thẳng c: Đoạn thẳng [A, B] Đoạn thẳng a: Đoạn thẳng [B, C] Đoạn thẳng b: Đoạn thẳng [C, A] Đoạn thẳng j: Đoạn thẳng [B, D] Đoạn thẳng k: Đoạn thẳng [A, D] Đoạn thẳng l: Đoạn thẳng [A, H] Đoạn thẳng n: Đoạn thẳng [D, K] Đoạn thẳng p: Đoạn thẳng [K, I] Đoạn thẳng q: Đoạn thẳng [E, H] Đoạn thẳng r: Đoạn thẳng [E, K] A = (2.07, 6.63) A = (2.07, 6.63) A = (2.07, 6.63) B = (-3.47, -9.98) B = (-3.47, -9.98) B = (-3.47, -9.98) C = (20.7, -9.89) C = (20.7, -9.89) C = (20.7, -9.89) Điểm H: Giao điểm đường của i, a Điểm H: Giao điểm đường của i, a Điểm H: Giao điểm đường của i, a Điểm I: Giao điểm đường của h, i Điểm I: Giao điểm đường của h, i Điểm I: Giao điểm đường của h, i Điểm D: Giao điểm đường của f, h Điểm D: Giao điểm đường của f, h Điểm D: Giao điểm đường của f, h Điểm K: Giao điểm đường của m, a Điểm K: Giao điểm đường của m, a Điểm K: Giao điểm đường của m, a Điểm E: I đối xứng qua a Điểm E: I đối xứng qua a Điểm E: I đối xứng qua a

a) Xét tam giác vuông BHI có \(\widehat{BIH}=90^o-\widehat{IBH}\)

Xét tam giác vuông ABD có \(\widehat{BDB}=90^o-\widehat{ABD}\)

Lại do BD là phân giác nên \(\widehat{IBH}=\widehat{ABD}\). Vậy thì \(\widehat{BIH}=\widehat{ADI}\)

Lại có \(\widehat{BIH}=\widehat{AID}\) (Hai góc đối đỉnh) nên \(\widehat{ADI}=\widehat{AID}\) hay tam giác AID cân tại A.

b) Do BD là phân giác nên DA = DK (Tính chất điểm thuộc tia phân giác)

Lại theo câu a, tam giác ADI cân tại A nên AD = AI. Vậy thì AI = DK

Ta có AH// DK (Cùng vuông góc với BC) nên \(\widehat{AID}=\widehat{IDK}\) (so le trong)

Vậy ta có \(\Delta AID=\Delta KDI\left(c-g-c\right)\)

c) Xét tam giác IEK có IH = HE nên KH là trung tuyến. Lại có KH cũng là đường cao. Vậy tam giác IEK cân tại K hay \(\widehat{HIK}=\widehat{HEK}\)

Lại có \(\widehat{HIK}=\widehat{IKD}\) (so le trong) nên \(\widehat{HEK}=\widehat{IKD}\)

Theo câu b, \(\Delta AID=\Delta KDI\Rightarrow\widehat{DAI}=\widehat{IKD}\)

Vậy nên \(\widehat{HEK}=\widehat{IAD}\)

Xét tứ giác ADKE có DK // AE nên nó là hình thang. Lại có \(\widehat{HEK}=\widehat{IAD}\) nên ADKE là hình thang cân.

(Có các cách chứng minh khác nhưng vì mới đầu lớp 8 nên cô sử dụng kiến thức liên quan đã học)

22 tháng 9 2017

Làm ơn giải cho mình, mình cần gấp lắmmmmmmm

a: góc AID=góc BIH=90 độ-góc CBI

góc ADI=90 độ-góc ABD

mà góc ABD=góc CBI

nên góc AID=góc ADI

=>ΔADI cân tại A
b: Xét ΔBAD vuông tại A và ΔBKD vuông tại K có

BD chung

góc ABD=góc KBD

Do đo: ΔBAD=ΔBKD

=>DA=DK=AI

Xét tứ giác AIKD có

AI//DK

AI=DK

AI=AD

Do đo; AIKD là hình thoi

c Xét ΔKIE có

KH vừa là đường cao, vừa là trung tuyến

nên ΔKIE cân tại K

=>KI=KE=AD

Xét tứ giác ADKE có

DK//AE

KE=AD
DO đó: ADKE là hình thang cân

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

a: Ta có: \(\widehat{BIH}+\widehat{IBH}=90^0\)

mà \(\widehat{AID}=\widehat{BIH}\)

nên \(\widehat{AID}+\widehat{DBC}=90^0\)

mà \(\widehat{ADI}+\widehat{ABD}=90^0\)

và \(\widehat{DBC}=\widehat{ABD}\)

nên \(\widehat{AID}=\widehat{ADI}\)

hay ΔAID cân tại I