K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2015

tứ giác AECF có góc AEC=AFC là 2 góc kề nhìn cạnh AC nên nt đg tròn

b) ta có : góc ABK =0,5 sđ cung AK=90 độ

xet tam giac ABK và AFC có

góc ABK=góc AFC=90 độ

goc AKB =góc ACF (GÓC NT CHAN CUNG AB)

=>Tam giác ABK đồng dạng vs tam giác AFC(G.G)

14 tháng 3 2017

Tứ giác AECF có góp AEC=ACF laf2 góc kề nhìn cạnh AC nên nối tiếp đường tròn

B)Ta có:Góc ABK=0,5 sđ cùng AK=90 độ

Xét tam giác ABK

a: Sửa đề: BFEC

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

góc BAK=góc BAD+góc DAK

góc DAC=góc DAK+góc CAK

mà góc BAD=góc CAK

nên góc BAK=góc DAC

Xét ΔABK vuông tại B và ΔADC vuông tại D có

góc BAK=góc DAC

=>ΔABK đồng dạng với ΔADC

25 tháng 4 2022

Viết còn cặc

a: góc BEH+góc BFH=90 độ

=>BEHF nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

Xét ΔABK vuông tại B và ΔAFC vuông tại F có

góc AKB=góc ACF

=>ΔABK đồng dạng với ΔAFC

a: Xét tứ giác CGFB có \(\widehat{CGB}=\widehat{CFB}=90^0\)

nên CGFB là tứ giác nội tiếp

b: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC\(\perp\)CD

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>AB\(\perp\)BD

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{ADC}\)

Xét ΔACD vuông tại C và ΔCFB vuông tại F có

\(\widehat{ADC}=\widehat{CBF}\)

Do đó: ΔACD~ΔCFB

c: ta có: BH\(\perp\)AC

CD\(\perp\)AC

Do đó: BH//CD

Ta có: CH\(\perp\)AB

BD\(\perp\)BA

Do đó: CH//BD

Ta có: ΔOBC cân tại O

mà OI là đường cao

nên I là trung điểm của BC

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

d: ta có: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

mà I là trung điểm của BC

nên I là trung điểm của HD

=>H,I,D thẳng hàng

4: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

5: Xét ΔHDE và ΔHCB có

góc HDE=góc HCB

góc DHE=góc CHB

=>ΔHDE đồng dạng với ΔHCB

=>DE/CB=HD/HC

=>DE*HC=HD*BC

a: góc BIH+góc BKH=180 độ

=>BIHK nội tiếp

b: OE vuông góc BC

=>sđ cung EB=sđ cung EC

=>góc BAE=góc CAE

Xét ΔAKB vuông tại K và ΔACF vuông tại  C có

góc ABK=góc AFC

=>ΔAKB đồng dạng với ΔACF

=>góc BAK=góc CAF

=>góc DAE=góc FAE

=>AE là phân giác của góc DAF