Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: BFEC
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
góc BAK=góc BAD+góc DAK
góc DAC=góc DAK+góc CAK
mà góc BAD=góc CAK
nên góc BAK=góc DAC
Xét ΔABK vuông tại B và ΔADC vuông tại D có
góc BAK=góc DAC
=>ΔABK đồng dạng với ΔADC
tứ giác AECF có góc AEC=AFC là 2 góc kề nhìn cạnh AC nên nt đg tròn
b) ta có : góc ABK =0,5 sđ cung AK=90 độ
xet tam giac ABK và AFC có
góc ABK=góc AFC=90 độ
goc AKB =góc ACF (GÓC NT CHAN CUNG AB)
=>Tam giác ABK đồng dạng vs tam giác AFC(G.G)
Tứ giác AECF có góp AEC=ACF laf2 góc kề nhìn cạnh AC nên nối tiếp đường tròn
B)Ta có:Góc ABK=0,5 sđ cùng AK=90 độ
Xét tam giác ABK
a: góc BEH+góc BFH=90 độ
=>BEHF nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
Xét ΔABK vuông tại B và ΔAFC vuông tại F có
góc AKB=góc ACF
=>ΔABK đồng dạng với ΔAFC
a: Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BCDE là tứ giác nội tiếp
b: Xét ΔDHC vuông tại D và ΔDAB vuông tại D có
\(\widehat{HCD}=\widehat{ABD}\)
Do đó: ΔDHC\(\sim\)ΔDAB
Suy ra: DH/DA=DC/DB
hay \(DH\cdot DB=DA\cdot DC\)
a: Xét tứ giác BEMC có
góc BEC=góc BMC=90 độ
=>BEMC là tứ giác nội tiếp
b: AEHM; BEHI;CIHM;AEIC; BIMA
c: Xét (O) có
ΔACK nội tiếp
AK là đường kính
=>ΔACK vuông tại C
Xét ΔACK vuông tại C và ΔAIB vuông tại I có
góc AKC=góc ABI
=>ΔACK đồng dạng vơi ΔAIB
=>AC/AI=AK/AB
=>AC*AB=AK*AI
a: góc NDH+góc NFH=180 độ
=>NDHF nội tiếp
b: Xét ΔHFN vuông tại F và ΔHEC vuông tại E có
góc FHN=góc EHC
=>ΔHFN đồng dạng với ΔHEC
=>HF/HE=HN/HC
=>HF*HC=HE*HN
c: Kẻ tiếp tuyến Mx tại M của (O)
=>góc xMC=góc MNC=góc MEF
=>FE//Mx
=>EF vuông góc MK
4: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
5: Xét ΔHDE và ΔHCB có
góc HDE=góc HCB
góc DHE=góc CHB
=>ΔHDE đồng dạng với ΔHCB
=>DE/CB=HD/HC
=>DE*HC=HD*BC