Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có BFC = 90* ( góc nội tiếp chắn nửa đường tròn )
=> AB vuông góc CF
BEC = 90* ( góc nội tiếp chắn nửa đường tròn )
=> AC vuông góc BE
Tam giác ABC có BE, CF là đường cao ( AB vuông góc CF tại F và AC vuông góc BE tại E )
Mà BE và CF cắt nhau tại H
Suy ra H là trực tâm tam giác ABC
=> AH vuông góc BC tại D
AH . AD = AE . AC
Xét tam giác AHE và ADC
AEH = ADC = 90*
góc A : góc chung
Vậy tam giác AEH đồng dạng tam giác ADC
=> \(\frac{AE}{AD}\)=\(\frac{AH}{AC}\)
=> AE . AC = AD . AH
b) Gợi ý nhé bạn
Ta chứng minh tứ giác BFHD nội tiếp
=> DFH = HBD
Mà HBD = CFE ( cùng chắn CE )
Nên DFH = CFE
=> FC là phân giác góc EFD
=> DFE = 2 CFE
Mà EOC = 2 CFE ( góc ở tâm và góc nội tiếp cùng chắn cung CE )
Suy ra DFE = EOC
=> Tứ giác EODF nội tiếp ( góc trong = góc đối ngoài )
c) Tứ giác EODF nội tiếp
=> EDF = EOF
Mà EOF = 2 ECF ( góc ở tâm và góc nội tiếp cùng chắn EF )
Nên EDF = 2 ECF
Tam giác DFL cân tại D
=> EDF = 2 FLD = 2 FLE
Mà EDF = 2 ECF (cmt)
Nên FLE = ECF
=> Tứ giác EFCL nội tiếp
Mà tam giác CEF nội tiếp (O)
=> L thuộc (O)
Tam giác BLC nội tiếp (O). Có BC là đường kính
Suy ra tg BLC vuông tại L
=> BLC = 90*
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
a) Xét tứ giác DFEC có
\(\widehat{DFC}=\widehat{DEC}\left(=90^0\right)\)
\(\widehat{DFC}\) và \(\widehat{DEC}\) là hai góc cùng nhìn cạnh DE
Do đó: DFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Ta có CD vuông AB => \(\widehat{CDA}=90^o\)
CE vuông AM => \(\widehat{CEA}=90^o\)
Xét tứ giác ADCE có :\(\widehat{CDA}+\widehat{CEA}=90^o+90^o=180^o\)
=> Tứ giác ADCE nội tiếp
b) Tương tự ta chứng minh được tứ giác CDBF nội tiếp
Tứ giác ADCE nội tiếp => \(\widehat{CDE}=\widehat{CAE}\)( cùng chắn cung CE)
Tứ giác CDBF nội tiếp => \(\widehat{CFD}=\widehat{CBD}\)( cùng chắn cung DC)
Mà \(\widehat{CBD}=\widehat{CAE}\)( cùng chắn cung AC của đường tròn (O))
=> \(\widehat{CDE}=\widehat{CFD}\)
Tương tự như trên ta chứng minh được : \(\widehat{DEC}=\widehat{DAC}=\widehat{CBF}=\widehat{FDC}\)
Xét tam giác CDE và tam giác CFD có:
\(\widehat{CDE}=\widehat{CFD}\)
\(\widehat{DEC}=\widehat{FDC}\)
=> \(\Delta CDE=\Delta CFD\)
3) Gọi Cx là tia đối của ta CD
Nối OM. Dễ dàng chứng minh được: OM vuông AB, \(\widehat{AOM}=\widehat{BOM}\)(1)
Ta có: Cx//OM ( cùng vuông góc với AB), CE//OA ( cùng vuông với AM)
=> \(\widehat{AOM}=\widehat{ECx}\)(2)
Cx// OM, CF//OB ( cùng vuông với BM)
=> \(\widehat{BOM}=\widehat{FCx}\)(3)
Từ (1), (2), (3),
=> \(\widehat{ECx}=\widehat{FCx}\)
=> Cx là phân giác góc ECF
4. Ở câu 2 Ta đã chứng minh : \(\widehat{CDE}=\widehat{CBD}\Rightarrow90^o=\widehat{DCB}+\widehat{CBD}=\widehat{CDE}+\widehat{DCB}=\widehat{CDI}+\widehat{DCK}\)
Tương tự như trên chứng minh được: \(\widehat{CDK}+\widehat{ICD}=90^o\)
Xét tứ giác IDKC có: \(\widehat{IDK}+\widehat{ICK}=\widehat{IDC}+\widehat{CDK}+\widehat{ICD}+\widehat{DCK}=\left(\widehat{IDC}+\widehat{DCK}\right)+\left(\widehat{CDK}+\widehat{ICD}\right)\)
\(=90^o+90^o=180^o\)
=> Tứ giác IDKC nội tiếp
=> \(\widehat{IKC}=\widehat{IDC}=\widehat{DBC}\)
=> IK//AB ( 2 góc so le trong)
a) 3 đường cao AD;BE;CF của \(\Delta\)ABC gặp nhau tại H.
Thấy ngay: Tứ giác BFHD nội tiếp đường tròn => ^FBH=^FDH (1)
Tương tự: ^ECH=^EDH (2)
Từ (1) và (2) kết hợp với ^FBH=^ECH (Cùng phụ ^BAC) => ^FDH=^EDH
=> DH là tia phân giác của ^FDE.
Ta có: MN // BC và AD vuông BC => MN vuông AD (Quan hệ //, vg góc)
Xét \(\Delta\)MDN: DH vuông MN (cmt); DH là p/g ^MDN (hay ^FDE)
=> \(\Delta\)MDN cân đỉnh D => DM=DN => AD là đường trung trực của MN
=> AM=AN => \(\Delta\)AMN cân đỉnh A (đpcm).
b) Tia AM cắt BC tại K.
Xét \(\Delta\)NAI: ^AIN=1800 - (^IAN + ^INA) (3)
Ta thấy: ^IAN = ^MAI - ^MAN = ^BAC - ^MAN = ^BAM + ^CAN (Do ^MAI=^BAC)
^INA= ^NAD + ^NDA (Do ^INA là góc ngoài tam giác AND)
=> ^IAN + ^INA = ^BAM + (^CAN +^NAD) + ^NDA = ^BAM + ^NDA + ^DAC
= ^BAM + ^NDA + ^CBE
Lại có: Tứ giác AEDB nội tiếp đường tròn => ^ADE=^ABE hay ^NDA=^ABE
=> ^IAN + ^INA = ^BAM + ^CBE + ^ABE = ^BAM + ^ABC= ^BAK + ^ABK
Mà ^AMN=^AKC (Đồng vị) = ^BAK + ^ABK (Góc ngoài đỉnh K tam giác AKB)
Suy ra: ^IAN + ^INA = ^AMN (4)
Thế (4) vào (3) => ^AIN = 1800 - ^AMN <=> ^AIN + ^AMN =1800
=> Tứ giác AMNI nội tiếp đường tròn (đpcm).
c) Dễ c/m \(\Delta\)AMD=\(\Delta\)AND (c.c.c) => ^AMD=^AND <=> 1800-^AMD=1800-^AND
=> ^AMF=^ANI. Mà tứ giác AMNI nt => ^ANI=^AMI
Do đó: ^AMF=^AMI => MA là tia phân giác ^FMI (đpcm).
cảm ơn bạn Kurokawa Neko, bạn trả lời sớm giúp mình, mình đang ôn đội tuyển nên có rất nhiều bài cần hỏi, bạn giúp mình nha.
Cảm ơn!