K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

A B C E D F M N I H K

a) 3 đường cao AD;BE;CF của \(\Delta\)ABC gặp nhau tại H.

Thấy ngay: Tứ giác BFHD nội tiếp đường tròn => ^FBH=^FDH (1)

Tương tự: ^ECH=^EDH (2)

Từ (1) và (2) kết hợp với ^FBH=^ECH (Cùng phụ ^BAC) => ^FDH=^EDH

=> DH là tia phân giác của ^FDE.

Ta có: MN // BC và AD vuông BC => MN vuông AD (Quan hệ //, vg góc)  

Xét \(\Delta\)MDN: DH vuông MN (cmt); DH là p/g ^MDN (hay ^FDE)

=> \(\Delta\)MDN cân đỉnh D => DM=DN => AD là đường trung trực của MN

=> AM=AN => \(\Delta\)AMN cân đỉnh A (đpcm).

b) Tia AM cắt BC tại K.

Xét \(\Delta\)NAI: ^AIN=1800 - (^IAN + ^INA) (3)

Ta thấy: ^IAN = ^MAI - ^MAN = ^BAC - ^MAN = ^BAM + ^CAN (Do ^MAI=^BAC)

             ^INA= ^NAD + ^NDA (Do ^INA là góc ngoài tam giác AND)

=> ^IAN + ^INA = ^BAM + (^CAN +^NAD) + ^NDA = ^BAM + ^NDA + ^DAC

= ^BAM + ^NDA + ^CBE

Lại có: Tứ giác AEDB nội tiếp đường tròn => ^ADE=^ABE hay ^NDA=^ABE

=> ^IAN + ^INA = ^BAM + ^CBE + ^ABE = ^BAM + ^ABC= ^BAK + ^ABK

Mà ^AMN=^AKC (Đồng vị) = ^BAK + ^ABK (Góc ngoài đỉnh K tam giác AKB)

Suy ra: ^IAN + ^INA = ^AMN (4)

Thế (4) vào (3) => ^AIN = 1800 - ^AMN <=> ^AIN + ^AMN =1800

=> Tứ giác AMNI nội tiếp đường tròn (đpcm).

c)  Dễ c/m \(\Delta\)AMD=\(\Delta\)AND (c.c.c) => ^AMD=^AND <=> 1800-^AMD=1800-^AND

=> ^AMF=^ANI. Mà tứ giác AMNI nt => ^ANI=^AMI

Do đó: ^AMF=^AMI => MA là tia phân giác ^FMI (đpcm).

16 tháng 6 2018

cảm ơn bạn Kurokawa Neko, bạn trả lời sớm giúp mình, mình đang ôn đội tuyển nên có rất nhiều bài cần hỏi, bạn giúp mình nha.

Cảm ơn!

12 tháng 10 2017

Hung nguyen

25 tháng 5 2016

a) Ta có BFC = 90* ( góc nội tiếp chắn nửa đường tròn )

=> AB vuông góc CF

BEC = 90* ( góc nội tiếp chắn nửa đường tròn )

=> AC vuông góc BE

Tam giác ABC có BE, CF là đường cao ( AB vuông góc CF tại F và AC vuông góc BE tại E )

Mà BE và CF cắt nhau tại H 

Suy ra H là trực tâm tam giác ABC

=> AH vuông góc BC tại D

                 AH . AD = AE . AC

Xét tam giác AHE và ADC

AEH = ADC = 90*

góc A : góc chung

Vậy tam giác AEH đồng dạng tam giác ADC

=> \(\frac{AE}{AD}\)=\(\frac{AH}{AC}\)

=> AE . AC = AD . AH

b) Gợi ý nhé bạn

Ta chứng minh tứ giác BFHD nội tiếp 

=> DFH = HBD 

Mà HBD = CFE ( cùng chắn CE )

Nên DFH = CFE 

=> FC là phân giác góc EFD 

=> DFE = 2 CFE

Mà EOC = 2 CFE ( góc ở tâm và góc nội tiếp cùng chắn cung CE )

Suy ra DFE = EOC

=> Tứ giác EODF nội tiếp ( góc trong = góc đối ngoài )

c) Tứ giác EODF nội tiếp 

=> EDF = EOF 

Mà EOF = 2 ECF ( góc ở tâm và góc nội tiếp cùng chắn EF )

Nên EDF = 2 ECF

Tam giác DFL cân tại D 

=> EDF = 2 FLD = 2 FLE

Mà EDF = 2 ECF (cmt) 

Nên FLE = ECF 

=> Tứ giác EFCL nội tiếp

Mà tam giác CEF nội tiếp (O)

=> L thuộc (O)

Tam giác BLC nội tiếp (O). Có BC là đường kính 

Suy ra tg BLC vuông tại L

=> BLC = 90*

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)a) Chứng minh AD là trung trực của đoạn EF.[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.Bài...
Đọc tiếp

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

a) Xét tứ giác DFEC có

\(\widehat{DFC}=\widehat{DEC}\left(=90^0\right)\)

\(\widehat{DFC}\) và \(\widehat{DEC}\) là hai góc cùng nhìn cạnh DE

Do đó: DFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

12 tháng 4 2019

o D C A B E F x M I K

a) Ta có CD vuông AB => \(\widehat{CDA}=90^o\)

CE vuông AM => \(\widehat{CEA}=90^o\)

Xét tứ giác ADCE có :\(\widehat{CDA}+\widehat{CEA}=90^o+90^o=180^o\)

=> Tứ giác ADCE nội tiếp

b) Tương tự ta chứng minh được tứ giác CDBF nội tiếp

Tứ giác ADCE nội tiếp => \(\widehat{CDE}=\widehat{CAE}\)( cùng chắn cung CE)

 Tứ giác CDBF nội tiếp => \(\widehat{CFD}=\widehat{CBD}\)( cùng chắn cung DC)

Mà \(\widehat{CBD}=\widehat{CAE}\)( cùng chắn cung AC của đường tròn (O))

=> \(\widehat{CDE}=\widehat{CFD}\)

Tương tự như trên ta chứng minh được : \(\widehat{DEC}=\widehat{DAC}=\widehat{CBF}=\widehat{FDC}\)

Xét tam giác CDE  và tam giác CFD có: 

\(\widehat{CDE}=\widehat{CFD}\)

\(\widehat{DEC}=\widehat{FDC}\)

=> \(\Delta CDE=\Delta CFD\)

3) Gọi Cx là tia đối của ta CD

Nối OM. Dễ dàng chứng minh được: OM vuông AB, \(\widehat{AOM}=\widehat{BOM}\)(1)

Ta có: Cx//OM ( cùng vuông góc với AB), CE//OA ( cùng vuông với AM)

=> \(\widehat{AOM}=\widehat{ECx}\)(2)

Cx// OM, CF//OB ( cùng vuông với BM)

=> \(\widehat{BOM}=\widehat{FCx}\)(3)

Từ (1), (2), (3), 

=> \(\widehat{ECx}=\widehat{FCx}\)

=> Cx là phân giác góc ECF

4. Ở câu 2 Ta đã chứng minh : \(\widehat{CDE}=\widehat{CBD}\Rightarrow90^o=\widehat{DCB}+\widehat{CBD}=\widehat{CDE}+\widehat{DCB}=\widehat{CDI}+\widehat{DCK}\)

Tương tự như trên chứng minh được: \(\widehat{CDK}+\widehat{ICD}=90^o\)

Xét tứ giác IDKC có: \(\widehat{IDK}+\widehat{ICK}=\widehat{IDC}+\widehat{CDK}+\widehat{ICD}+\widehat{DCK}=\left(\widehat{IDC}+\widehat{DCK}\right)+\left(\widehat{CDK}+\widehat{ICD}\right)\)

\(=90^o+90^o=180^o\)

=> Tứ giác IDKC nội tiếp

=> \(\widehat{IKC}=\widehat{IDC}=\widehat{DBC}\)

=> IK//AB ( 2 góc so le trong)