K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(\widehat{ABC}>\widehat{ACB}\)

mà cạnh đối diện với góc ABC là cạnh AC

và cạnh đối diện với góc ACB là cạnh AB

nên AC>AB

b: Xét ΔABC có AC>AB

mà hình chiếu của AC trên BC là HC

và hình chiếu của AB trên BC là HB

nên HC>HB

c: Xét ΔKBC có HC>HB

mà HC là hình chiếu của KC trên BC

và HB là hình chiếu của KB trên BC

nên KC>KB

9 tháng 7 2019

A B C D E H F

Tam giác ABC có : góc ABC > góc ACB (gt)

=> AC > AB (đl)

AD _|_ BC (gt) 

D thuộc BC

=> BD < DC

H thuộc AD 

=> HB < HC  

b, AD; BE là đường cao

ADcắt BE tại H 

=> CH là đường cao (đl)

=> CH _|_ AB (đn)

HF _|_ AB (gt)

=> C; H; F thẳng hàng

9 tháng 7 2019

c.

\(AB>AD;AC>AD\left(ch>cgv\right)\)

\(\Rightarrow AB+AC>2AD\left(đpcm\right)\)

d

Kẻ \(HN//AC;HM//AB\)

Theo tính chất cặp đoạn chắn,ta có:\(HM=AN\)

Áp dụng bất đẳng thức tam giác ta có:

\(HA< AM+HM=AM+AN\left(1\right)\)

Do \(BH\perp AC;HN//AC\Rightarrow NH\perp HN\)

Xét  \(\Delta BHN\) ta có:\(BH< BN\left(2\right)\)

Tương tự trong tam giác CHM có \(CH< CM\left(3\right)\)

Tiừ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow HA+HB+HC< AM+AN+BN+CM=AB+AC\)

Tương tự,ta có:

\(HA+HB+HC< AB+BC\)

\(HA+HB+HC< BC+AC\)

\(\Rightarrow3\left(HA+HB+HC\right)< 2\left(AB+BC+CA\right)\)

\(\Rightarrow HA+HB+HC< \frac{2}{3}\left(AB+BC+CA\right)\)

28 tháng 11 2016

A B C H E D I

a) xét tam giác AHB và tam giác AHD ta có

AH=AH ( cạnh chung)

BH=HD(gt)

góc AHB= góc AHD (=90)

-> tam giác AHB= tam giác AHD (c-g-c)

b) ta có

DE vuông góc AC (gt)

AB vuông góc AC ( tam giác ABC vuông tại A)

-> DE//AB

ta có

AC>AB (gt)

-> góc ABC > góc ACB ( quan hệ cạnh góc đối diện trong tam giác)

c) Xét tam giác AHB và tam giác IHD ta có

AH=HI (gt)
BH=HD(gt)

góc AHB= góc IHD (=90)

-> tam giac AHB = tam giác IHD (c-g-c)

-> góc BAH= góc HID ( 2 góc tương ứng )

mà 2 góc nẳm ở vị trí sole trong 

nên BA//ID

ta có

BA//ID (cmt)

BA//DE (cm b)

-> ID trùng DE

-> I,E,D thẳng hàng

23 tháng 3 2016

1.

Ta có : AC<AD (vì : D là tia đối của tia BC )

=> HD<HC

3. 

Ta có : AB+AC>AH (vì : tog 2 cah cua tam giác luôn lớn hơn cah con lại)

Mà : 1/2AH<AB+AC

=> AB+AC>2AH

4.

Ta có : ko hiu

23 tháng 3 2016

bạn giải bài 3 mik hk hiu, bn viết rõ rak dc hk

12 tháng 7 2018

a, Xét t/g AHC và t/g DHC có:

AH = DH (gt)

góc AHC = góc DHC = 90 độ

HC chung

=> t/g AHC = t/g DHC (c.g.c) (đpcm)

b, Áp dụng định lí pytago vào t/g ABC vuông tại A ta có:

AB2 + AC2 = BC2

=> AC2 = BC2 - AB2 = 102 - 62 = 64 = 82

=> AC = 8 (cm)

c, Xét t/g AHB và t/g DHE có:

AH = DH (gt)

góc AHB = góc DHE (đối đỉnh)

BH = EH (gt)

=> t/g AHB = t/g DHE (c.g.c) (đpcm)

=> góc HBA = góc DEH (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // DE 

Mà AB _|_ AC

=> DE _|_ AC (đpcm)

d, Vì t/g AHC = t/g DHC (câu a) => AC = CD (2 cạnh tương ứng) (1)

Xét t/g AHB và t/g AHE có:

BH = BE (gt)

góc AHB = góc AHE = 90 độ

AH chung

=> t/g AHB = t/g AHE (c.g.c)

=> AB = AE (2 cạnh tương ứng) (2)

Xét t/g ABC có: AB + AC > BC (BĐT tam giác) (3)

Từ (1),(2),(3) =>  AE + CD > BC (đpcm)

6 tháng 6 2016

a) Xét tam giác AHB (H=90*) va tam giác AHD (H=90*) co:

HB=HD ( gt)

AH chung

=> tam giác AHB=tam giác AHD

hok ngu toan mấy câu còn lại không biết làm

18 tháng 3 2021
Cho ∆ABC vuông tại A( ABAB. c.Nếu HC-HB=AB. So sánh góc DAC và góc C. Giúp mik vs ạ!!