K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2016

a) xét tam giác AMBvà tam giácCMD có 

góc AMB=gócCMD(đối đỉnh)

MA=MC

MD=MB

suy ra tam giác AMB=tam giác CMD

b) tam giác AMB=tam giác CMD(câu a)

AB=CD(hai cạnh tương ứng)

góc DCM=góc MAB(hai góc tương ứng và so le trong)

suy ra AB//CD

câu c đang tìm hiểu từ từ nha tick đi rồi giải câu c luôn cho

 

 

2 tháng 1 2016

A B E D C M

a) Xét \(\Delta\)AMB & \(\Delta\)CMD có:

MB=MD( giả thiết)

góc AMB= góc CMD(2 góc đối đỉnh)

AM=MC( vì M là trung điểm của AC)

=>\(\Delta\)AMB=\(\Delta\)CMD(c.g.c)

b) Theo a) \(\Delta\)AMB=\(\Delta\)CMD

=>AB=CD(2 cạnh tương ứng)

=>góc BAM= góc DCM( 2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong=>AB//CD

c) theo b) AB//CD

=> góc ABC= góc BCE( 2 góc so le trong)

Ta có: AB=CD( theo c/m b)

mà CD=CE( vì C là trung điểm DE)

=>AB=EC

Xét \(\Delta\)ABC & \(\Delta\)ECB có:

AB=EC( theo c/m trên)

góc ABC= góc ECB( theo cm trên)

AC là cạnh chung

=>\(\Delta\)ABC=\(\Delta\)ECB(c.g.c)

=>góc ACB= góc EBC( 2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

=>AC//BE

 

31 tháng 12 2023

a: Xét ΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD

Do đó: ΔAMB=ΔCMD

b: ta có: ΔAMB=ΔCMD

=>\(\widehat{MAB}=\widehat{MCD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔIBM và ΔKDM có

IB=KD

\(\widehat{IBM}=\widehat{KDM}\)(hai góc so le trong, AB//CD)

BM=MD

Do đó: ΔIBM=ΔKDM

=>\(\widehat{IMB}=\widehat{KMD}\)

mà \(\widehat{IMB}+\widehat{IMD}=180^0\)(hai góc kề bù)

nên \(\widehat{KMD}+\widehat{IMD}=180^0\)

=>I,M,K thẳng hàng

16 tháng 12 2022

UKM THÌ CÓ BÀI TỰA VẬY BẠN SO ĐC CHỨ 

a) Xét AIM và BIC có:IA = IB (do I là trung điểm của AB);AIM BIC(hai góc đối đỉnh);IM = IC (giảthiết).Do đó AIM = BIC (c.g.c)Suy ra AM = BC (hai cạnh tương ứng) và MAI CBI(hai góc tương ứng)  Mà MAI, CBIlà hai góc ởvịtrí so le trong nên AM // BC.b) Xét ANE và CBE có:EA = EC (do E là trung điểm của AC);AEN CEB(hai góc đối đỉnh);EN= EB(giảthiết).Do đó ANE = CBE (c.g.c)Suy ra NAE BCE(hai góc tương ứng)Mà NAE, BCElà hai góc ởvịtrí so le trong nên AN// BC.c) Ta có AM // BC (theo câu a) và AN // BC (theo câu b)Do đó qua điểm A có hai đường thẳng song song với BC nên theo tiên đềEuclid, hai đường thẳng AM và AN trùng nhau hay ba điểm A, M, N thẳng hàng.Lại có ANE = CBE (theo câu b) nên AN = CB (hai cạnh tương ứng)Mặt khác AM = BC (theo câu a)Do đó AM = AN (cùng bằng BC)  Mà ba điểm A, M, N thẳng hàng nên A là trung điểm của MN.
16 tháng 12 2022

a: Xét ΔAMB và ΔCMD có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AB//CD và AB=CD

c: Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

=>AK//BC

mà AD//BC

nên D,A,K thẳng hàng

15 tháng 12 2023

loading...  loading...  loading...  

a: Xét ΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét tứ giác ABCD có 

M la trung điểm của AC

M là trung điểm của BD

DO đó: ABCD là hình bình hành

Suy ra: AB//CD và AB=CD

18 tháng 12 2023

a: Xét ΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét ΔMAD và ΔMCB có

MA=MC

\(\widehat{AMD}=\widehat{CMB}\)

MD=MB

Do đó: ΔMAD=ΔMCB

=>\(\widehat{MAD}=\widehat{MCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//BC

c: Xét ΔNAK và ΔNBC có

NA=NB

\(\widehat{ANK}=\widehat{BNC}\)(hai góc đối đỉnh)

NK=NC

Do đó; ΔNAK=ΔNBC

=>\(\widehat{NAK}=\widehat{NBC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AK//BC

Ta có: AD//BC

AK//BC

AK,AD có điểm chung là A

Do đó: D,A,K thẳng hàng

8 tháng 12 2021

a/  Xét △ABM và △DMC có:

\(\begin{matrix}AM=MD\left(gt\right)\\MB=MC\left(gt\right)\\\hat{AMB}=\hat{CMD}\left(đối\text{ }đỉnh\right)\end{matrix}\)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\) (đpcm).

b/ Ta có: \(\Delta AMB=\Delta DMC\left(cmt\right)\)

\(\Rightarrow\hat{MAB}=\hat{MDC}\); hai góc ở vị trí so le trong.

Vậy: AB // CD (đpcm).

c/ Xét △BAE có:

\(\begin{matrix}BH\perp AE\left(gt\right)\\AH=HE\left(gt\right)\end{matrix}\)

⇒ BH vừa là đường cao, vừa là đường trung tuyến.

⇒ △BAE cân tại B.

\(\Rightarrow BE=BA\). Mà \(AB=CD\left(\Delta AMB=\Delta DMC\right)\)

Vậy: BE = CD (đpcm).

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔDMC

b: ta có; ΔAMB=ΔDMC

=>AB=DC

Ta có: ΔAMB=ΔDMC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC

c: Xét ΔNAB và ΔNCE có

NA=NC

\(\widehat{ANB}=\widehat{CNE}\)(hai góc đối đỉnh)

NB=NE

Do đó: ΔNAB=ΔNCE

=>AB=CE 

Ta có: ΔNAB=ΔNCE

=>\(\widehat{NAB}=\widehat{NCE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CE

Ta có: AB//CE

AB//CD

CE,CD có điểm chung là C

Do đó: E,C,D thẳng hàng

Ta có: EC=AB

CD=AB

Do đó: EC=CD
mà E,C,D thẳng hàng

nên C là trung điểm của ED