K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2017

4 tháng 1 2023

dạ cảm ơn ạ

28 tháng 6 2021

A B C N M K

a) Ta có: AN = NB = 1/2AB (gt)

           AM = MC = 1/2AC (gt)

mà AB = AC (gt)

=> AN = NB = AM = MC
Xét tam giác ABM và tam giác ACN 

có: AM = AN (gt)

 \(\widehat{A}\): chung

AB = AC (gt)

=> tam giác ABM = tam giác ACN (c.g.c)

b) Ta có: AN = NB (gt)

 AM = MC (gt)

=> NM là đường trung bình của tam giác ABC

=> MN // BC

c) Ta có: tam giác ABM = tam giác ACN (cmt)

=> \(\widehat{ABM}=\widehat{ACN}\)

Mà \(\widehat{B}=\widehat{ABM}+\widehat{MBC}\)

 \(\widehat{C}=\widehat{ACN}+\widehat{NCB}\)

\(\widehat{B}=\widehat{C}\) (gt)

=> \(\widehat{KBC}=\widehat{KCB}\) => tam giác KBC cân tại K có KD là đường trung truyến => KD cũng là đường cao => KD \(\perp\)BC

Tam giác ABC cân tại A có AD là đường trung tuyến => AD cũng là đường cao => AD \(\perp\)BC

=> KD \(\equiv\)AD => A, K, D thẳng hàng

a, Xét \(\Delta ABM\)và \(\Delta CAN\) có

AB = AC ( \(\Delta\)cân )

\(\widehat{A}\)  chung

AN = AM 

\(\Rightarrow\Delta ABM=\Delta CAN\)( c.g.c)

17 tháng 9 2023

a) Tam giác ABC cân tại A nên AB = AC. M, N lần lượt là trung điểm của cạnh AC, AB nên AM = AN.

Xét tam giác ABM và tam giác ACN có: AM = AN; \(\widehat A\)chung; AB = AC.

Vậy \(\Delta ABM = \Delta ACN\)(c.g.c) hay BM = CN.

b) Xét tam giác ABC có G là giao điểm của hai đường trung tuyến BM và CN nên G là trọng tâm tam giác ABC. Do đó:

\(GB = \dfrac{2}{3}BM;GC = \dfrac{2}{3}CN\). Mà BM = CN nên GB = GC.

Vậy tam giác GBC cân tại G. 

Xét ΔABM và ΔACN có

AB=AC
góc BAM chung

AM=AN

=>ΔABM=ΔACN

=>BM=CN

Mình xin phép sửa đề:

Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G

Chứng minh tam giác ABN = tam giác ACN , từ đó suy ra BM=CN

`------`

\(\text{GT | AB = AC, }\widehat{\text{B}}=\widehat{\text{C}}\)

\(\text{CM | BM = CN}\)

\(\text{BM là đường trung tuyến}\)

`->`\(\text{MA = MC (1)}\)

\(\text{CN là đường trung tuyến}\)

`->`\(\text{NA = NB (2)}\)

`\Delta ABC` cân tại A

`->`\(\widehat{\text{B}}=\widehat{\text{C}}\text{, AB = AC (3)}\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)

`->`\(\text{NA = NB = MA = MC}\)

Xét `\Delta ABM` và `\Delta ACN`:

\(\left\{{}\begin{matrix}\text{BM = CN}\\\widehat{\text{B}}=\widehat{\text{C}}\\\text{BC chung}\end{matrix}\right.\)

`=> \Delta ABM = \Delta ACN (c-g-c)`

`->`\(\text{BM = CN (2 cạnh tương ứng).}\)

loading...

18 tháng 5 2016

A B C G M N

 

vì tgiac ABC cân tại A

có BM và CN là trung tuyến=> AM=MC=AN=NB

a, xét tgiac BMC và tgiac CNB có:

BC là cạnh chung

góc B= góc C(gt)

BM=CN(cmt)

vậy tgiac BMC=Tgiac CNB(c.g.c)

b. xét tgiac AMN có AM=AN(cmt)

=> tgiac AMN cân tại đỉnh A

ta lại có tgiac ABC cân tại A 

Vậy góc ANM= góc ABC= (180-góc A):2

mà góc ANM và góc ABC ở vị trí đồng vị => MN//BC

 

18 tháng 5 2016

c.ta có BM cắt CN tại G=> G là trọng tâm tgiac ABC=> AG là đường trung tuyến ứng vơi cạnh BC

mà tamgiac ABC cân tại A nên đường trung tuyến AG cũng là đường cao vậy AG vuông góc với BC

mà BC//MN nên AG vuông góc với MN(từ vuông góc đến //)