K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 4 2019

\(sinA.cosB.cosC+sinB.cosC.cosA+sinC.cosB.cosA\)

\(=cosC\left(sinA.cosB+cosA.sinB\right)+sinC.cosB.cosA\)

\(=cosC.sin\left(A+B\right)+sinC.cosB.cosA\)

\(=cosC.sinC+sinC.cosA.cosB\)

\(=sinC\left(cosC+cosA.cosB\right)=sinC\left(-cos\left(A+B\right)+cosA.cosB\right)\)

\(=sinC\left(-cosA.cosB+sinA.sinB+cosA.cosB\right)\)

\(=sinA.sinB.sinC\)

2 tháng 7 2018

A, B , C là ba góc của ΔABC nên ta có: A + B + C = 180º

a) sin A = sin (180º – A) = sin (B + C)

b) cos A = – cos (180º – A) = –cos (B + C)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(A+B+C=180^o\)

a)

\(\sin (B + C) = \sin \left( {{{180}^o} - A} \right) = \sin A\)

Vậy \(\sin A = \sin \;(B + C)\)

b)

\(\cos (B + C) = \cos \left( {{{180}^o} - A} \right) =  - \cos A\)

Vậy \(\cos A =  - \cos \;(B + C)\)

23 tháng 3 2022

tau chịu

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

A. \(\sin A = \sin \,(B + C)\)

Ta có: \((\widehat A  + \widehat C) + \widehat B= {180^o}\)

\(\Rightarrow \sin \,(B + C) = \sin A\)

=> A đúng.

B. \(\cos A = \cos \,(B + C)\)

Sai vì \(\cos \,(B + C) =  - \cos A\)

C. \(\;\cos A > 0\) Không đủ dữ kiện để kết luận.

Nếu \({0^o} < \widehat A < {90^o}\) thì \(\cos A > 0\)

Nếu \({90^o} < \widehat A < {180^o}\) thì \(\cos A < 0\)

D. \(\sin A\,\, \le 0\)

Ta có \(S = \frac{1}{2}bc.\sin A > 0\). Mà \(b,c > 0\)

\( \Rightarrow \sin A > 0\)

=> D sai.

Chọn A