Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}=cos\dfrac{B+C}{2}+2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}\)
\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}-cos^2\dfrac{B+C}{4}+sin^2\dfrac{B+C}{4}=0\)\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}+2sin^2\dfrac{B+C}{4}-1=0\)
Δ' = \(cos^2\dfrac{B-C}{4}-2\left(A-1\right)\ge0\)
\(\Rightarrow A-1\le\dfrac{1}{2}\Leftrightarrow A\le\dfrac{3}{2}\)
1.
\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)
\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)
\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)
\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)
\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)
Sao t lại đc như này v, ai check hộ phát
Vì A+B+C=180^{\circ}A+B+C=180∘ nên V T=\dfrac{\sin ^{3} \dfrac{B}{2}}{\cos \left(\dfrac{180^{\circ}-B}{2}\right)}+\dfrac{\cos ^{3} \dfrac{B}{2}}{\sin \left(\dfrac{180^{\circ}-B}{2}\right)}-\dfrac{\cos \left(180^{\circ}-B\right)}{\sin B} \cdot \tan BVT=cos(2180∘−B)sin32B+sin(2180∘−B)cos32B−sinBcos(180∘−B)⋅tanB.
V T=\dfrac{\sin ^{3} \dfrac{B}{2}}{\cos \left(\dfrac{180^{\circ}-B}{2}\right)}+\dfrac{\cos ^{3} \dfrac{B}{2}}{\sin \left(\dfrac{180^{\circ}-B}{2}\right)}-\dfrac{\cos \left(180^{\circ}-B\right)}{\sin B} \cdot \tan BVT=cos(2180∘−B)sin32B+sin(2180∘−B)cos32B−sinBcos(180∘−B)⋅tanB =\dfrac{\sin ^{3} \dfrac{B}{2}}{\sin \dfrac{B}{2}}+\dfrac{\cos ^{3} \dfrac{B}{2}}{\cos \dfrac{B}{2}}-\dfrac{-\cos B}{\sin B} \cdot \tan B=\sin ^{2} \dfrac{B}{2}+\cos ^{2} \dfrac{B}{2}+1=2=V P=sin2Bsin32B+cos2Bcos32B−sinB−cosB⋅tanB=sin22B+cos22B+1=2=VP
Suy ra điều phải chứng minh.
sinA/2.cos^3(B/2)=sinB/2.cos^3(A/2)
sinA/2.cos(B/2)[ 1 - sin^2B/2]=sinB/2.cos(A/2)[1 -sin^2A/2]
sinA/2.cosB/2 - sinB/2.cosA/2 = 1/2sinA/2.sinB/2[ sinB - sinA]
sin(A-B)/2 = sinA/2.sinB/2 cos(A+B)/2.sin(A-B)/2
sin(A-B)/2[ 1 - sinA/2.sinB/2 cos(A+B)/2] = 0
Vì [1 - sinA/2.sinB/2 cos(A+B)/2] >0
=> sin(A-B)/2 =0
=> A = B
\(\Leftrightarrow sinA=2sinB.cosC\)
\(\Leftrightarrow\dfrac{a}{2R}=2.\dfrac{b}{2R}.\dfrac{a^2+b^2-c^2}{2ab}\)
\(\Leftrightarrow a^2=a^2+b^2-c^2\)
\(\Leftrightarrow b^2=c^2\Leftrightarrow b=c\)
Vậy tam giác ABC cân tại A
Theo đl sin có:
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\Rightarrow b=a\dfrac{sinB}{sinA};c=\dfrac{sinC}{sinA}.a\)
Mà `b+c=2a`
\(\Rightarrow a\dfrac{sinB}{sinA}+a\dfrac{sinC}{sinA}=2a\\ \Rightarrow\dfrac{sinB}{sinA}+\dfrac{sinC}{sinA}=2\\ \Leftrightarrow sinB+sinC=2sinA\)
Chọn B
a) ta có : \(cos^2\left(a-b\right)-sin^2\left(a+b\right)\)
\(=\left(cosa.cosb+sina.sinb\right)^2-\left(sina.cosb+sinb.cosa\right)^2\)
\(=cos^2a.cos^2b+sin^2a.sin^2b-sin^2a.cos^2b-sin^2b.cos^2a\)
\(=cos^2a.cos^2b-sin^2a.cos^2b+sin^2a.sin^2b-sin^2b.cos^2a\)\(=cos^2b\left(cos^2a-sin^2a\right)-sin^2b\left(cos^2a-sin^2a\right)\)
\(=\left(cos^2b-sin^2b\right)\left(cos^2a-sin^2a\right)=cos2a.cos2b\left(đpcm\right)\)