K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2023

Giúp tui điii:3

31 tháng 12 2023

a: Ta có: ΔBAC cân tại B

mà BI là đường cao

nên I là trung điểm của AC

Xét tứ giác BICD có

H là trung điểm chung của BC và ID

=>BICD là hình bình hành

Hình bình hành BICD có \(\widehat{BIC}=90^0\)

nên BICD là hình chữ nhật

b: Ta có: ΔBDC vuông tại D

=>\(BD^2+DC^2=BC^2\)

=>\(BD^2=14^2-10^2=96\)

=>\(BD=4\sqrt{6}\left(cm\right)\)

Vì BDCI là hình chữ nhật

nên \(S_{BDCI}=BD\cdot DC=4\sqrt{6}\cdot10=40\sqrt{6}\left(cm^2\right)\)

c: Để hình chữ nhật BDCI là hình vuông thì BI=CI

mà CI=CA/2

nên BI=CA/2

Xét ΔBAC có

BI là đường trung tuyến

\(BI=\dfrac{AC}{2}\)

Do đó: ΔBAC vuông tại B

=>\(\widehat{ABC}=90^0\)

16 tháng 11 2016

SABC = \(\frac{4\times6}{2}\) = 12 (cm2)

BH là đường cao của tam giác BAC cân tại B.

=> BH là đường trung tuyến của tam giác ABC.

=> H là trung điểm của AC.

=> AH = HC = AC/2 = 6/2 = 3 (cm)

Tam giác HBC vuông tại H có:

BC2 = HB2 + HC2 (định lý Pytago)

= 42 + 32

= 16 + 9

= 25

BC = \(\sqrt{25}\) = 5 (cm)

Tam giác HBC vuông tại H có HI là đường trung tuyến (I là trung điểm của BC)

=> HI = BC/2 = 5/2 = 2,5 (cm)

I là trung điểm của BC (gt)

I là trung điểm của HD (H đối xứng D qua I)

=> BHCD là hình bình hành.

mà BHC = 900

=> BHCD là hình chữ nhật.

=> BHCD là hình vuông

<=> BH = HC

<=> Tam giác BAC có đường trung tuyến BH bằng 1 nửa cạnh AC.

<=> Tam giác ABC vuông tại B.

mà tam giác BAC cân tại B.

=> Tam giác BAC vuông cân tại B.

Vậy BHCD là hình vuông khi tam giác BAC vuông cân tại B.

21 tháng 12 2017

Cho tam giác ABC có AD là phân giác của góc BAC ( D∈∈BC). Từ D kẻ các đường thẳng song song với AB và AC, chúng cắt AB, AC tại E và F.

a) Chứng minh: Tứ giác AEDF là hình thoi.

b) Trên tia AB lấy điểm G sao cho F là trung điểm của AG. Chứng minh: Tứ giác EFGD là hình bình hành.

c) Gọi I là điểm đối xứng của D qua F, tia IA cắt tỉa ĐỂ tại K. Gọi O là giao điểm của AD và EF. Chứng minh: G đối xứng với K qua O.

đ) Tìm điều kiện của tam giác ABC để tứ giác ADGI là hình vuông.

26 tháng 7 2016

A B C H K I

a) Do \(\Delta ABH\)vuông (gt):

mà I Trung điểm AB (gt) 

nên \(HI=\frac{1}{2}AB=\frac{6}{2}=3cm\)

b) Xét Tứ giác AHBK:

HI = HK (gt)

AI = AB (gt)

=> Tứ giác ABHK là hình bình hành (2 đường chéo cắt nhau tai trung điểm mỗi đường)

mà \(HI=\frac{1}{2}AB\Leftrightarrow2HI=AB\Leftrightarrow HK=AB\)

=> Hình bình hành ABHK là hình chữ nhật (đpcm).

c) Điều kiện để HCN ABHK là hình vuông thì  \(\Delta ABC\)thì:

Dường cao AH = HB 

=> HCN AHBK là hình vuông.

26 tháng 7 2016

ai chịch nhau với mình không

a: Sửa đề: EH=14cm

\(S_{DHE}=\dfrac{1}{2}\cdot4\cdot14=2\cdot14=28\left(cm^2\right)\)

b: Xét tứ giác DHFN có

M là trung điểm chung của DF và HN

góc DHF=90 độ

Do đó: DHFN là hình chữ nhật

26 tháng 12 2017

đáp án https://goo.gl/BjYiDy