Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé.
a.
Xét tứ giác AEBD có:
AH = HB (H là trung điểm của AB)
HE = HD (vì E và D đối xứng với nhau qua H)
=> AEBD là hình bình hành.
Lại có: \(\widehat{ADB}=90^o\) (AD là đường trung tuyến của tam giác cân ABC)
Từ trên suy ra: AEBD là hình chữ nhật.
b.
Vì AEBD là hình chữ nhật nên ta có:
- AE // BD và AE = BD (1)
mà: BC // AE và BD = DC (2)
Từ (1), (2) suy ra: ACDE là hình bình hành.
c.
có: \(S_{AEBD}=AD.DB=\dfrac{1}{2}.AD.BC=S_{ABC}\)
d.
Để AEBD là hình vuông thì AD = BD
=> \(AD=\dfrac{1}{2}BC\) => Tg ABC vuông.
Mà AB = AC
=> Điều kiện của tam giác ABC là vuông cân tại A để AEBD là hình vuông.
Giải:
a) Ta có AM=MB và EM=MD ( đối xứng ) =>AEBD là hình bình hành
mà góc D = 90 (độ) => AEBD là hình chữ nhật
b) từ câu a =>AE//DC ; mà DC=DB (AD là đường cao của tam giác cân ABC =>là AD cũng đường trung tuyến)
=>ACDE là hình bình hành
c) để tứ giác AEBD là hình vuông thì:
như câu a thì AEBD là hình chữ nhật =>điều hiện là:AD=BD mà AD=BD =>tam giác ABC phải là tam giác vuông cân
d) S tam giác ABC= AD.BD/2 = AD.BD 1
S hình chữ nhật ABDE= AD.BD 2
Từ 1 và 2 =>S tam giác ABC = S hình chữ nhật ABDE (đpcm)
Lời giải:a)
$M$ là trung điểm $AB$. $E$ đối xứng với $D$ qua $M$ nên $M$ là trung điểm $DE$. Như vậy, xét tứ giác $ADBE$ có 2 đường chéo $AB$ và $ED$ cắt nhau tại trung điểm $M$ của chính nó nên $ADBE$ là hình bình hành. Mà $\widehat{D}=90^0$ nên $ADBE$ là hình chữ nhật.
b)
Vì $ADBE$ là hình chữ nhật nên $AE=BD$ và $AE\parallel BD$.
$ABC$ cân tại $A$ nên đường cao $AD$ đồng thời là đường trung tuyến. Do đó $BD=DC$
Suy ra $AE\parallel DC$ và $AE=DC$. Do đó $ACDE$ là hình bình hành.
c)
Ta thấy: $MD=\frac{1}{2}AC$ (tính chất đường trung bình)
$MB=\frac{1}{2}AB=\frac{1}{2}AC$
$\Rightarrow MB=MD\Rightarrow \widehat{MBD}=\widehat{MDB}$
$\Rightarrow 180^0-\widehat{MBD}=180^0-\widehat{MDB}$
$\Leftrightarrow \widehat{KBC}=\widehat{MDC}$
Xét tam giác $KBC$ và $MDC$ có:
$\widehat{KBC}=\widehat{MDC}$ (cmt)
$\frac{KB}{BC}=\frac{AB}{BC}=\frac{\frac{AB}{2}}{\frac{BC}{2}}=\frac{MD}{DC}$
$\Rightarrow \triangle KBC\sim \triangle MDC$ (c.g.c)
$\Rightarrow \frac{KC}{MC}=\frac{BC}{DC}=2$
$\Rightarrow KC=2MC$ (đpcm)
a/ Ta có MD là đường tb tam giác BAC nên ME//AC(1)
Mà vì \(\Delta AEM=\Delta BDM\left(c.g.c\right)\Rightarrow\widehat{AEM}=\widehat{BDM}\Rightarrow\)AE//BC(2)
Từ (1) và (2) suy ra ngay ĐPCM
b/ Từ giả thiết là D,E và A,B đối xứng với nhau qua điểm M suy ra AEBD là hbh
Từ đó để AEBD là hình chữ nhật thì MD phải vuông góc với BC Từ đó suy ra tam giác ACB phải vuông ở C
Lời giải:
a. $M,N$ đối xứng nhau qua $O$ nghĩa là $O$ là trung điểm $MN$
Tứ giác $AMBN$ có 2 đường chéo $AB, MN$ cắt nhau tại trung điểm $O$ của mỗi đường nên $AMBN$ là hbh $(1)$
Mặt khác, tam giác $ABC$ cân tại $A$ nên trung tuyến $AM$ đồng thời là đường cao
$\Rightarrow AM\perp BC$ nên $\widehat{AMB}=90^0(2)$
Từ $(1); (2)\Rightarrow AMBN$ là hình chữ nhật
b. Vì $AMBN$ là hcn nên $BM\parallel AN$ và $BM=AN$
Mà $B,M,C$ thẳng hàng và $BM=MC$ nên:
$AN\parallel CM, AN=CM$
$\Rightarrow ACMN$ là hình bình hành
c.
$ACMN$ là hbh nên $MN\parallel AC$
Để $ACMN$ là hình vuông thì $MN\perp AB$
$\Leftrightarrow AC\perp AB$
$\Leftrightarrow ABC$ là tam giác vuông tại $A$
a) Xét tứ giác AMCK:
I là trung điểm của AC (gt).
I là trung điểm của MK (K là điểm đối xứng với M qua I).
Mà \(\widehat{AMC}=90^o\left(AM\perp BC\right).\)
=> Tứ giác AMCK là hình chữ nhật (dhnb).
b) Xét tam giác ABC cân tại A: AM là đường cao (gt).
=> AM là trung tuyến (Tính chất tam giác cân).
=> M là trung điểm của BC.
=> BM = MC.
Ta có: AK = MC (Tứ giác AMCK là hình chữ nhật).
BM = MC (cmt).
=> AK = MC = BM.
Ta có: AK // MC (Tứ giác AMCK là hình chữ nhật).
=> AK // BM.
Xét tứ giác AKMB:
AK // BM (cmt).
AK /= BM (cmt).
=> Tứ giác AKMB là hình bình hành (dhnb).
c) Tứ giác AMCK là hình vuông (gt).
=> AK = AM (Tính chất hình vuông).
Mà AK = BM (cmt).
=> AM = BM = AK.
Mà BM = \(\dfrac{1}{2}\) BC (M là trung điểm BC).
=> AM = BM = AK = \(\dfrac{1}{2}\) BC.
Xét tam giác ABC cân tại A:
AM = \(\dfrac{1}{2}\) BC (cmt).
=> Tam giác ABC vuông cân tại A.
a. Vì EH =HD , AH =BH
=> Tứ giác AEBD là hình bình hành ( tính chất)
a) E là điểm đối xứng của D qua H
\(\Rightarrow\) HE = HD
Tứ giác AEBD có HE = HD; HA = HB
\(\Rightarrow\)AEBD là hình bình hành
mà có \(\widehat{ADB}\)= 900
\(\Rightarrow\)hình bình hành AEBD là hình chữ nhật
b) \(\Delta ABC\)cân tại A, có AD là đường cao
\(\Rightarrow\)AD là đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DB = DC
\(\Delta ABC\)có HA = HB; DB = DC
\(\Rightarrow\)HD là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)HD // AC
\(\Rightarrow\)Tứ giác AHDC là hình thang
a) Xét tam giác ABC cân tại A: AD là phân giác (gt).
\(\Rightarrow\) AD là đường cao (Tính chất các đường trong tam giác cân).
\(\Rightarrow\) AD \(\perp\) BC.
Xét tứ giác AEBD có:
\(+\) I là trung điểm của AB (gt).
\(+\) I là trung điểm của ED (E là điểm đối xứng với D qua I).
\(\Rightarrow\) Tứ giác AEBD là hình bình hành (dhnb).
Mà \(\widehat{ADB}\) = 90o (AD \(\perp\) BC).
\(\Rightarrow\) Tứ giác AEBD là hình chữ nhật (dhnb).
b) Xét tam giác ABC cân tại A: AD là phân giác (gt).
\(\Rightarrow\) AD là trung tuyến (Tính chất các đường trong tam giác cân).
\(\Rightarrow\) D là trung điểm của BC. \(\Rightarrow\) BD = DC.
Mà BD = EA (Tứ giác AEBD là hình chữ nhật).
\(\Rightarrow\) EA = DC (= BD).
Tứ giác AEBD là hình chữ nhật (cmt).
\(\Rightarrow\) EA // DC (Tính chất hình chữ nhật).
Xét tứ giác AEDC có:
\(+\) EA = DC (cmt).
\(+\) EA // DC (EA // BD).
\(\Rightarrow\) Tứ giác AEDC là hình bình hành (dhnb).
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 đô
Do dó: AMCK là hình chữ nhật
b: Để AMCK là hình vuông thì AM=CM=BC/2
=>ΔABC vuông tại A
c: BM=BC/2=3cm
=>AM=4cm
SMAKC=3*4=12cm2