K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

a) BE = DC, ΔBEC = ΔCDB.

Vì ΔABC cân tại A nên: AB = AC.

Ta lại có: AB = AE + EB mà AE = EB (gt)

AC = AD + DC mà AD = DC (gt) 

⇒ AE = EB = AD = DC

Vậy BE = DC.

Xét ΔBEC và ΔCDB có:

BE = CD (cmt)

∠ABC = ∠ACB (ΔABC cân)

BC : cạnh chung.

Do đó: ΔBEC = ΔCDB (c.g.c)

b) ΔBGC cân.

Vì ΔBEC = ΔCDB (câu a) 

⇒ ∠ECB = ∠DBC (hai góc tương ứng)

⇒ ΔBGC cân tại G.

Câu c và hình chờ xíu :v  

28 tháng 4 2019

c) BC <4GD

Kẻ trung tuyến AG ⇒ G là trọng tâm của ΔABC, mà ΔABC cân (gt) ⇒ AG là phân giác của ∠BAC (∠A1 = ∠A2

AG cắt BC tại H (HB = HC)

Xét ΔABH và ΔACH có:

AB = AC (gt)

BH = HC (cmt)

AH : chung

Do đó: ΔABH = ΔACH (c.c.c)

⇒ ∠H1 = ∠H2 (hai góc tương ứng) Mà ∠H1 + ∠H2 = 180o

⇒ ∠H1 = ∠H2 = 180o : 2 = 90o hay AH ⊥ BC.

Vì ΔBGC cân tại G nên: GB = GC (hai cạnh đáy) Mà GB = 2GD 

⇒ 4GD = DB + GC.

Xét ΔBGH vuông tại H, ta có: BG > BH (định lí) (1)

Xét ΔCGH vuông tại H, ta có: CG > CH (định lí) (2)

Từ (1) và (2) suy ra: BG + CG > BH + CH

Mà GB + CG = 4GD (cmt) và CB = BH + CH

⇒ 4GD > BC 

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc BAD chung

=>ΔADB=ΔAEC

=>BD=CE

b: góc ABD=góc ACE

=>góc HBC=góc HCB

=>ΔHBC cân tại H

c: AB=AC

HB=HC

=>AH là trung trực của BC

20 tháng 7 2017

mk nha bn

a: Xét ΔABC vuông tại A và ΔAEC vuông tại A co

AC chung

AB=AE

=>ΔABC=ΔAEC

b: Xét ΔCBE có

BH,CA là đường trung tuyến

BH cắt CA tại M

=>M là trọng tâm

c: Xét ΔCBE có

A là trung điểm của BE

AK//CE

=>K là trung điểm của BC

=>E,M,K thẳng hàng