Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M
a)Xét tam giác AMB và tam giác AMC có:
AM chung
AB=AC(do tam giác ABC cân tại A)
BM=MC(đường trung tuyến AM cắt BC tại M)
=>tam giác AMB = tam giác AMC (c.c.c)
b) tam giác AMB = tam giác AMC => góc AMB=góc AMC (2 góc tương ứng)
mà góc AMB+góc AMC=180o (2 góc kề bù) => góc AMB=góc AMC=90o =>AM vuông góc với BC
c) Có: BM=MC=1/2 BC (đường trung tuyến AM cắt BC tại M) => BM=(1/2).10=5(cm)
Áp dụng định lí Py-ta-go cho tam giác vuông ABM ta được: AM2+BM2=AB2 <=> AM2+52=82
<=>AM2=82-52=64-25=39 <=> AM\(=\sqrt{39}\)
a/ Xét tam giác BEM và tam giác CFM có:
Góc B=C(Tam giác ABC cân tại A)
Góc BEM=CFM(Tam giác ABC cân tại A)
BM=MC(Trung tuyến AM)
=> Tam giác BEM=tam giác CFM(ch-gn)
b/Gọi giao điểm của EF và AM là O.
Vì AM là trung tuyến của tam giác cân nên AM cũng là đường cao của tam giác cân ABC.
=> Góc AMB=AMC=90 độ.
Mà Góc EMB=FMC(góc tương ứng của tam giác EMB=tam giác FMC)
=> Góc EMO=FMO.
Xét tam giác EMO và tam giác FMO có:
EM=MF(cạnh tương ứng trong tam giác EMB= tam giác FMC)
Góc EMO=FMO(cmt)
MO chung
=> Tam giác EMO=tam giác FMO(c-g-c)
=> Góc EOM=FOM(góc tương ứng)=180 độ/2=90 độ
EO=OF(cạnh tương ứng)
=> AM là đường trung trực của EF.
c/ Vì AI=\(\frac{8}{3}\)cm nên AM có độ dài là: \(\frac{8}{3}:\frac{2}{3}=4\)cm(tính chất trọng tâm tam giác)
Áp dụng định lí Pytago vào tam giác vuông AMC, ta được:
AC2=AM2+MC2=42+MC2=52=25
=> MC=\(\sqrt{\left(5^2-4^2\right)}=3\)cm
Mà BM=MC(Trung tuyến AM)
=> BC=3+3=6cm
Xét \(\Delta MBE\)và \(\Delta MAE\)ta có :
\(ME\): cạnh chung (1)
Góc \(MEB=MEA=90\)độ (2)
\(MB=MA\left(GT\right)\) (3)
Từ (1) ; (2) và (3) => \(\Delta MBE=\Delta MAE\)(cạnh-góc-cạnh)
\(\Rightarrow MB=MA\)( cặp cạnh tương ứng)
b) Áp dụng định lí Py-ta-go cho tam giác vuông BAC có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow8^2+6^2=BC^2\)
\(\Rightarrow64+36=BC^2\)
\(\Rightarrow100=BC^2\)
\(\Rightarrow\)BC= Căn 100
\(\Rightarrow BC=10\)
Vậy BC = 10 cm .
Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.
Có BM = BC/2 = 6cm
Áp dụng định lí Pytago trong tam giác vuông ABM có:
AM2 = AB2 - BM2 = 102 - 62 = 64 ⇒ AM = 8m. Chọn C