K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2021

Violympic toán 7

28 tháng 3 2021

â mây zing gút chọp

6 tháng 1 2018

Bạn tự vẽ hình nha

a.Vì tam giác ABC cân tại A nên AB= AC và góc ABC = góc ACB

<=> góc ABM = góc ACN (vì các góc kề bù với nhau)

Xét tam giác ABM và tam giác ACN

Có: AB = AC (CMT)

      góc ABM = góc ACN (CMT)

      BM = CN (gt)

<=> tam giác ABM = tam giác ACN (c.g.c)

<=> AM = AN ( 2 góc tương ứng)

<=> tam giác AMN cân tại A

6 tháng 1 2018

b. Vì tam giác ABM = tam giác ACN (CMT)

<=> góc MAB = góc CAN ( 2 góc tương ứng)

Xét tam giác vuông AHB và tam giác vuông AKC

Có: AB= AC (CMT)

      góc AHB= góc AKC= 90 độ

     góc MAB = góc CAN (CMT)

<=> tam giác AHB = tam giác AKC ( cạnh huyền- góc nhọn)

a: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

XétΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}=\widehat{CAK}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

b: Ta có: ΔABM=ΔACN

nên AM=AN

 

suy nghĩ hơi lâu à nha ~~~ đợi chút

8 tháng 2 2020

https://olm.vn/hoi-dap/detail/8238415826.html Link câu trl

Bài 9: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm Nsao cho BM = CN.a) Chứng minh rằng tam giác AMN là tam giác cânb) Kẻ BH ⊥ AM (H ∊ AM), kẻ CK ⊥ AN (K ∊ AN). Chứng minh rằng BH = CKc) Chứng minh rằng AH = AKd) Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?Bài 10: Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm.a) Tính độ dài đoạn thẳng BCb) Vẽ tia phân...
Đọc tiếp

Bài 9: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N
sao cho BM = CN.
a) Chứng minh rằng tam giác AMN là tam giác cân
b) Kẻ BH ⊥ AM (H ∊ AM), kẻ CK ⊥ AN (K ∊ AN). Chứng minh rằng BH = CK
c) Chứng minh rằng AH = AK
d) Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?
Bài 10: Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm.
a) Tính độ dài đoạn thẳng BC
b) Vẽ tia phân giác BD của góc B. Từ D kẻ DE BC ⊥ tại E.
Chứng minh  =  ABD EBD
c) Chứng minh: Tam giác ABE là tam giác cân
Bài 11: Cho ABC vuông tại A. BE là tia phân giác của góc ABC (E AC .  ) Kẻ EI BC ⊥ (I BC .  )
a) Chứng minh  =  ABE IBE
b) Tia IE và tia BA cắt nhau tại M. Chứng minh EMC cân
c) Chứng minh AI // MC
Bài 12: Cho ABC vuông tại B (AC AB .  ) D là điểm thuộc AC sao cho AB = AD. Kẻ AH BD ⊥ tại
H, AH cắt BC tại E.

a) Chứng minh
b) Chứng minh cân
c) Giả sử Tính cạnh BC?

 =  ABH ADH
EBD BED 120 , = o AB 2cm. = Bài 13: Cho ABC vuông tại C có A 60 = o và đường phân giác của BAC cắt BC tại E. Kẻ EK AB ⊥
tại K (K AB .  ) Kẻ BD AE ⊥ tại D (D AE .  ) Chứng minh:

a)c) KA = KB
b) AE là đường trung trục của đoạn thẳng CKd) EB > EC

 =  ACE AKE Bài 14: Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB (E AC F AB   , )
a) Chứng minh  =  ABE ACF
b) Gọi I là giao điểm của BE và CF. Chứng minh BIC cân
c) So sánh FI và IC
d) Gọi M là trung điểm của BC. Chứng minh A, I, M thẳng hàng.
Bài 15: Cho tam giác ABC cân tại A có BAC = 1200 . Lấy D E , bên cạnh BC , sao BAD CAE = = 300 .

a) là tam giác gì? Vì sao?b) là tam giác gì? Vì sao?

DAB DAE

1

Bài 9:

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

c: Ta có: ΔAHB=ΔAKC

nên AH=AK

a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

BM=CN(gt)

Do đó: ΔABM=ΔACN(c-g-c)

Suy ra: AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

b) Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

BM=CN(gt)

\(\widehat{HMB}=\widehat{KNC}\)(hai góc ở đáy trong ΔAMN cân tại A)

Do đó: ΔHBM=ΔKCN(cạnh huyền-góc nhọn)

Suy ra: BH=CK(hai cạnh tương ứng)

c) Ta có: ΔHBM=ΔKCN(cmt)

nên HM=KN(hai cạnh tương ứng)

Ta có: AH+HM=AM(H nằm giữa A và M)

AK+KN=AN(K nằm giữa A và N)

mà AM=AN(cmt)

và HM=KN(cmt)

nên AH=AK(đpcm)

d) Ta có: ΔHBM=ΔKCN(cmt)

nên \(\widehat{HBM}=\widehat{KCN}\)(hai góc tương ứng)

mà \(\widehat{OBC}=\widehat{HBM}\)(hai góc đối đỉnh)

và \(\widehat{OCB}=\widehat{KCN}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)