K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

ΔOBC cân tại O ⇒ OB = OC.

ΔAOB và ΔAOC có: AO chung, AB = AC (giả thiết), OB = OC (cmt)

⇒ ΔAOB = ΔAOC (c.c.c).

⇒ ∠BAO = ∠CAO

⇒ AO là tia phân giác của góc BAC

⇒ O cách đều hai cạnh AB, AC

13 tháng 2 2020

A B C M N = =

a) Ta có: 

AM + MB = AB

AN + NC = AC

Mà AB = AC(△ABC cân) và AM = AN (gt)

=> MB = NC

Xét △MBC và △NCB có:

MB = NC (cmt)

MBC = NCB (△ABC cân)

BC: chung

=> △MBC = △NCB (c.g.c)

=> BN = CM (2 cạnh tương ứng)

b) Vì △MBC = △NCB

=> MCB = NBC (2 góc tương ứng)

=> △BOC cân

c) Vì AM = AN (gt)

=> △AMN cân tại A

=> AMN = \(\frac{180^o-A}{2}\)(1)

Vì △ABC cân tại A

=> ABC = \(\frac{180^o-A}{2}\)(2)

Từ (1) và (2) => AMN = ABC

Mà hai góc AMN và  ABC ở vị trí đồng vị

=> MN // BC

10 tháng 3 2018

tam giác ABC cân tai A. Đường thẳng qua B song song với AC và dường thẳng qua C song song với AC cắt nhau tại D. Trên cạnh AB, AC lần lượt láy các điểm M, N sao cho AM + AN = AB.

= > tam giác DMN đều.

a: Xét ΔPBC và ΔQCB có 

PB=QC

\(\widehat{PBC}=\widehat{QCB}\)

BC chung

Do đo: ΔPBC=ΔQCB

Suy ra: \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

b: OB=OC

AB=AC

Do đó: AO là đường trung trực của BC

Ta có: ΔABC cân tại A

mà AO là đường trung trực

nên AO là đường phân giác

hay O cách đều hai cạnh AB và AC

16 tháng 11 2015

A B C M N I

Xét tam giác ABN và ACM có: AB = AC (vì tam giác ABC cân tại A); góc A chung; AN = AM (gt)

=> tam giác ABN = ACM (c - g - c)

=> góc ABN = ACM (2 góc tương ứng)

Mà có góc ABC = ACB (do tam giác ABC cân tại A)

Nên góc ABC - ABN = ACB - ACM => góc IBC = ICB => tam giác BIC cân tại I

16 tháng 11 2015

Ko thì còn cách nào nữa Ngô Nam

23 tháng 2 2020

Bài 1 : 

Xét \(\Delta ABC\)có AB = AC (gt)

=> \(\Delta ABC\)cân tại A

=> \(\widehat{B}=\widehat{C}\)

MÀ \(\widehat{C}=\)70

=> \(\widehat{B}=\)70

Xét \(\Delta ABC\)có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=>                       \(\widehat{A}+70^0+70^o=180^o\)

=>                     \(\widehat{A}=180^0-140^o=40^0\)

Vậy \(\widehat{A}=40^0;\widehat{B}=70^0\)

12 tháng 7 2019

Ta sẽ chứng minh ΔOBC có hai góc OBC và OCB bằng nhau

ΔABQ và ΔACP có: AB = AC, AQ = AP, ∠A chung

⇒ ΔABQ = ΔACP (c.g.c)

⇒ ∠ABQ = ∠ACP.

Mà ∠ABC = ∠ACB (Vì tam giác ABC cân tại A)

⇒ ∠ABC - ∠ABQ = ∠ACB - ∠ACP hay ∠OBC = ∠OCB

⇒ ΔOBC cân tại O.

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AM=MB=AN=NC

Xét ΔANB và ΔAMC có

AN=AM(cmt)

\(\widehat{BAN}\) chung

AB=AC(ΔABC cân tại A)

Do đó: ΔABN=ΔACM(c-g-c)

Suy ra: \(\widehat{ABN}=\widehat{ACM}\)(hai góc tương ứng)

hay \(\widehat{MBG}=\widehat{NCG}\)(3)

Xét ΔMBG có \(\widehat{MBG}+\widehat{MGB}+\widehat{BMG}=180^0\)(Định lí tổng ba góc trong một tam giác)(1)

Xét ΔNCG có \(\widehat{NCG}+\widehat{NGC}+\widehat{GNC}=180^0\)(Định lí tổng ba góc trong một tam giác)(2)

Từ (1), (2) và (3) suy ra \(\widehat{MGB}+\widehat{BMG}=\widehat{NGC}+\widehat{CNG}\)

mà \(\widehat{MGB}=\widehat{NGC}\)(hai góc đối đỉnh)

nên \(\widehat{BMG}=\widehat{CNG}\)

Xét ΔBMG và ΔCNG có 

\(\widehat{BMG}=\widehat{CNG}\)(cmt)

BM=CN(cmt)

\(\widehat{MBG}=\widehat{NCG}\)(cmt)

Do đó: ΔBMG=ΔCNG(g-c-g)

Suy ra: GM=GN(Hai cạnh tương ứng)